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Abstract

The solar convection zone rotates differentially, with its equatorial region rotating more rapidly than the polar
regions. This form of differential rotation, also observed in many other low-mass stars, is understood to arise when
Coriolis effects are stronger than those associated with buoyant driving of the convection. When buoyancy
dominates, a so-called antisolar state of differential rotation results, characterized by rapidly rotating poles and a
slow equator. The transition between these two states has been shown to occur when the intensity of these two
forces is roughly equal or, equivalently, when the convective Rossby number of the system is unity. Here we
consider an alternative view of the transition that relates this phenomenon to convective structure and convective-
zone depth. Using a series of 3D rotating-convection-zone simulations, we demonstrate that the solar/antisolar
transition occurs when the columnar convective structures characteristic of rotating convection attain a diameter
roughly equivalent to the shell depth. When the characteristic convective wavelength exceeds twice the shell depth,
we find that the coherent convective structures necessary to sustain an equatorward Reynolds stress are lost, and an
antisolar state results. We conclude by presenting a force-balance analysis that relates this geometric interpretation
of the transition to the convective Rossby-number criteria identified in previous studies.

Unified Astronomy Thesaurus concepts: Solar convective zone (1998); Stellar convective zones (301);
Hydrodynamics (1963); Solar differential rotation (1996); Astrophysical fluid dynamics (101); Solar interior
(1500); Solar rotation (1524); Stellar rotation (1629); Stellar interiors (1606); Helioseismology (709)

1. Introduction

Since the 17th century, observations of sunspots in the Sun
have demonstrated that its surface rotates differentially (Galilei
& Scheiner 1655). The rotation period of the poles is roughly
30 days, compared to the fast-rotating equator that completes
one revolution in 24 days. Moreover, the internal rotation
profile of the Sun has been shown by helioseismology to
exhibit significant latitudinal gradients of shear throughout the
convection zone, as well as layers of strong radial shear at its
base and in the near-photospheric regions (Thompson et al.
2003; Howe 2009).

Advances in stellar observational techniques have subse-
quently enabled the measurement of differential rotation
profiles in other stars. Those measurements have revealed that
most stars exhibit a solar-like differential rotation, character-
ized by a fast equator and slow poles (Collier Cameron et al.
2002; Barnes et al. 2005; Marsden et al. 2006, 2011;
Reiners 2006; Donati et al. 2008; Jeffers et al. 2011; Benomar
et al. 2018; Bazot et al. 2019). Observations have also revealed
another rotational regime in a few giants, subgiants, and
dwarfs. This regime, characterized by a slowly rotating equator
and rapidly rotating polar regions, is known as “antisolar”
differential rotation (Strassmeier et al. 2003; Weber et al. 2005;
Kővári et al. 2015, 2017; Harutyunyan et al. 2016; Benomar
et al. 2018).

While observational confirmation of antisolar behavior in
stars has been a relatively recent development, computational
studies of rotating convection have long posited the existence
of such a state (e.g., Gilman 1977). Within the solar context,

the solar/antisolar transition is of particular interest due to its
link to the Sun’s large-scale meridional circulation, which
mediates the timing of the solar cycle in many dynamo models
(e.g., Dikpati & Charbonneau 1999; Charbonneau 2020).
While the meridional flow is well characterized in the upper
convective zone, helioseismic observations yield conflicting
descriptions of its deep structure. Some studies indicate
(whereas others do not) the presence of multiple cells in depth
(Schad et al. 2012; Zhao et al. 2013; Jackiewicz et al. 2015;
Gizon et al. 2020).
Numerical studies of differential rotation may help to clarify

this ambiguity owing to the fact that meridional flow is
driven in response to convective angular-momentum transport
via a process known as gyroscopic pumping (Miesch &
Hindman 2011; Featherstone & Miesch 2015). Systems
evincing solar-like differential rotation tend to possess multiple
meridional cells in depth, whereas antisolar states tend to
possess monocellular flow within each hemisphere (Gastine
et al. 2013, 2014; Guerrero et al. 2013; Featherstone &
Miesch 2015). Only if the Sun was in a transitional state, a
possibility with some observational support (Metcalfe et al.
2016), would a monocellular meridional flow be expected to
occur along with a rapidly rotating equator.
The transition between these two regimes of differential

rotation has also been explored through studies of zonal winds
in giant planets (Aurnou et al. 2007; Gastine et al. 2013;
Soderlund et al. 2013). In fact, while Jupiter and Saturn possess
a complex, banded-wind structure, the ice giants Uranus and
Neptune posses relatively simple surface-rotation profiles that
are antisolar in nature (Sukoriansky et al. 2002; Helled et al.
2010). Whether motivated by planetary or stellar considera-
tions, a large body of work suggests that the transition between
the solar and antisolar states is controlled by the Rossby
number, Ro, of the convecting fluid. This nondimensional
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number expresses the ratio of rotational to convective time-
scales. Specifically,

( )Ro
Rotation Timescale

Convective Timescale
, 1º

so that a system subject to significant Coriolis force possesses
low Ro. Convection that is relatively insensitive to rotation is
characterized by a high value of Ro. Once Ro exceeds some
critical value, the convective Reynolds stress and meridional
flow change such that a solar-like differential rotation is no
longer sustainable (Gilman 1977; Aurnou et al. 2007; Käpylä
et al. 2011; Gastine et al. 2013, 2014; Guerrero et al. 2013;
Käpylä et al. 2014; Featherstone & Miesch 2015; Featherstone
& Hindman 2016a).

The Rossby number is typically defined in one of two ways
(we defer precise definitions for both to Section 2.3). Much like
the Reynolds number, it can be computed using the
characteristic speed and length scale of the resultant flow. It
can also be estimated a priori by system control parameters,
effectively using the freefall time across the domain as a proxy
for the convective timescale. The latter formulation is referred
to as the convective Rossby number, which we denote using a
subscript “c,” as Roc.

In what is perhaps the most extensive examination of the
topic to date, Gastine et al. (2014) incorporated data from
multiple rotating-convection studies and found that the
transition between regimes corresponds to a unity value for
Roc (i.e., when buoyancy and Coriolis forces are approximately
equal). This general behavior appears to be independent of
other system properties, such as shell aspect ratio or thermal-
and velocity-boundary conditions. It also appears to be
relatively insensitive to magnetism; MHD studies indicate
only a slight shift and/or broadening of the Roc= 1 transition
due to the presence of the Lorentz force (Fan & Fang 2014;
Karak et al. 2015; Mabuchi et al. 2015; Simitev et al. 2015;
Viviani et al. 2018; Warnecke 2018; Viviani & Käpylä 2021).

1.1. A Complementary View of the Transition

That the transition point between solar and antisolar
differential rotation depends on the relative strength of Coriolis
and buoyancy forces is in many ways unsurprising. Convection
subject to strong rotational influence is characterized by
organized and anisotropic transport of angular momentum
owing to the development of columnar convective structures
(Zhang 1992; Busse 2002). As discussed in Aurnou et al.
(2007), such correlated structures do not arise in the absence of
strong rotational constraint, and the resulting convection tends
to mix angular momentum throughout the shell, leading to the
antisolar configuration.

In this work, we further examine the link between convective
structure and the solar/antisolar transition. By considering a
suite of numerical models with a range of convection-zone
depths, we demonstrate that the point of transition occurs when
the characteristic spatial scale of convection exceeds the depth
of the convective layer. At that point, the coherent columnar
structures required to sustain a rapidly rotating equator no
longer manifest. We find that this geometric criterion for the
transition is consistent with, and indeed complementary to, the
Roc= 1 criterion that has been found in previous studies.

We provide a description of our numerical approach and
suite of new numerical models developed for this study in

Section 2, followed by a presentation of the results in Section 3.
In Section 4 we present a force-balance analysis that illustrates
the rough equivalence between our structural/geometric criterion
and the previously observed Roc= 1 point of transition.

2. The Numerical Experiment

2.1. Anelastic Formulation

For this study, we choose to model nonmagnetic, rotating
convection in spherical shells under the anelastic
approximation (Batchelor 1953; Gough 1969; Gilman &
Glatzmaier 1981). This approach retains the effects of
compressibility arising from background density and temper-
ature stratification while filtering out acoustic modes. It is
appropriate for the study of deep stellar and planetary interiors
where perturbations about the thermodynamic background state
are small and fluid motions are subsonic.
All models presented here employ a thermodynamic back-

ground state satisfying the ideal gas law such that

( )P T . 2r=

Here, horizontal overlines indicate background-state quantities,
P is the pressure, ρ is the density, T is the temperature, and is
the gas constant. Fluctuations about the background profile are
indicated by the absence of an overline. They may be related by
linearizing Equation (2), yielding

( )P

P

T

T

P

P

S

c
, 3

p

r
r g

= - = -

where S is the specific entropy, cp is the specific heat at
constant pressure, and γ is the adiabatic index.
The anelastic continuity equation is given by

· ( ) ( )v 0, 4r =

where ( )v v v v, ,r= q f is the velocity vector in spherical
coordinates. Its evolution is described through the momentum
equation

ˆ · ( )v
z v g

D

Dt

P S

c
2 , 5

p
0 ⎛

⎝
⎞
⎠

r r
r

r + W ´ = - - +

where g is the gravitational acceleration, z is the unit vector in
the z-direction (parallel to the rotation axis), and Ω0 is the
frame rotation rate. The viscous stress tensor  is given by

( · ) ( )ve2
1

3
, 6ij ij ij ⎡

⎣
⎤
⎦

r n d= -

where ν denotes the kinematic viscosity, eij is the strain stress
tensor, and δij is the Kronecker delta. The combined form of
buoyancy and pressure appearing in Equation (5) is exact for
adiabatically stratified background states such as those
employed in our models. It remains a reasonable approximation
for background states that are weakly nonadiabatic as well
(Lantz 1992; Braginsky & Roberts 1995).
Finally, the evolution of S is described by

· [ ]

( · ) ( )v

T
DS

Dt
T S Q

e e2
1

3
, 7ij ij

2⎡
⎣

⎤
⎦

r r k

rn

 



= +

+ -
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where κ is the thermal diffusivity, and where Q denotes any
possible source or sink of internal energy, such as that which
might arise through nuclear burning or radiative heating.

2.2. Numerical Approach

We evolve the system of Equations (2)–(7) using the open-
source Rayleigh convection code (Featherstone et al. 2021).
Rayleigh solves these equations in 3D spherical geometry
using a spectral transform approach based on that described in
Glatzmaier (1984). System variables are represented radially
using a truncated expansion of Chebyshev polynomials Tn(r)
extending up to the maximum degree nmax. A truncated
expansion in spherical harmonics ( )Y ,ℓ

m q f , extending up to the
maximum Legendre degree ℓmax, is employed on spherical
shells at each radius. Both polynomial expansions are dealiased
in radius such that

( )n N ℓ N1
2

3
and 1

2

3
, 8rmax max+ = + = q

where Nr and Nθ are the number of radial and latitudinal
collocation points employed, respectively. Derivatives in radius
and on spherical surfaces are calculated using the properties
of these two basis sets, respectively. Time integration is
accomplished using a hybrid implicit/explicit scheme with
linear and nonlinear terms evolved using the Crank–Nicolson
and the Adams–Bashforth methods, respectively. The solenoi-
dal constraint on the mass flux described by Equation (4) is
satisfied by decomposing the velocity field into stream
functions such that

( ˆ) ( ˆ) ( )v r rW Z , 9r   = ´ ´ + ´

where r̂ is the radial unit vector. W and Z are the poloidal and
toroidal stream functions respectively.

2.3. Model Setup

For this study, we simulate a series of 18 model stellar
convective zones. Each simulation is initiated with a polytropic
thermodynamic background state using the prescription of
Jones et al. (2011). Following Featherstone & Hindman
(2016b), we select a set of polytropic parameters that describe
an adiabatically stratified background state that resembles the
solar convection zone in many respects. Specifically, we adopt
a polytropic index n of 1.5, an interior mass of 1.989× 1033 g,
a density variation Nρ of 3 density scale heights spanning the
convective shell, a density of 1.805× 10−1 g cm−3 at the inner
boundary, and a value of 3.5× 108 erg K−1 g−1 for cp. As
noted in Featherstone & Hindman (2016b), adopting this
formulation in combination with solar-like values for the
domain bounds yields a thermodynamic profile in good accord
with that determined helioseismically for the Sun (e.g.,
Christensen-Dalsgaard et al. 1996).

In this study, we expand on the results of Featherstone &
Hindman (2016a) and Hindman et al. (2020), who employed a
shell aspect ratio χ of 0.759, corresponding to inner and outer
radii of rinner= 5× 1010 cm and router= 6.586× 1010 cm. The
models presented in this study supplement those earlier data sets
by varying the outer convection-zone radius and thus the shell
aspect ratio. We examine one set of models possessing a thin
convection zone, where χ= 0.85 and router= 5.88× 1010 cm.
We generate and analyze a second set of models as well, this

time possessing thick convection zones with χ= 0.38 and
router= 13.16× 1010 cm.
For each model, we adopt impenetrable, stress-free boundaries

conditions. At the lower boundary, we employ thermally
insulating boundary conditions (∂S/∂r= 0), whereas we enforce
a fixed-entropy condition at the upper boundary (S= 0). As in
Featherstone & Hindman (2016b), each model possesses an
internal source of heat Q(r) such that

( ) ( ( ) ( )) ( )Q r A P r P r, , . 10innerq f = -

The normalization constant A is chosen so that

( ) ( )L Q r dV, , , 11
V

 ò q f=

where Lå is the stellar luminosity. All simulations presented
here are nonmagnetic. Following thermal and dynamical
equilibration, all models were further evolved for at least
two-thirds of a viscous diffusion timescale across the layer. In
practice, the thin-shell models were run for several tens of
viscous diffusive times due to the reduced diffusion time across
the thin shell. Similarly, the models of Featherstone &
Hindman (2016a) and Hindman et al. (2020), whose data we
incorporate into this study, were evolved for at least one
viscous timescale following equilibration.
We vary the rotation rates, luminosities, and diffusivities

across our series of models, which are equivalently described
by three nondimensional numbers: a Prandtl number (Pr),
Ekman number (Ek), and a flux Rayleigh number (RaF). The
Prandtl number, which expresses the relative strength of
viscous and thermal diffusion, is defined as

( )Pr . 12
n
k

=

We adopt a value of unity for Pr in all simulations in this study.
The Ekman number Ek, which expresses the ratio of the
rotational and viscous timescales is given by

( )
L

Ek
2

, 13
2

n
=

W

where L is the shell depth. The Rayleigh number expresses the
strength of buoyancy relative to diffusive processes and is
defined as

˜ ˜
˜ ˜ ( )gFL

c T
Ra , 14

p
F

4

2r nk
=

where tildes indicate a volume-averaged value for the under-
lying variable. We denote our Rayleigh number with a
subscript “F” to indicate that the entropy scale is defined in
terms of the fixed flux imposed through the system. That flux,
which convection must transport in response to the heating Q,
is denoted by F. The values of ν, κ, and cp are taken to be
constant functions of space in this study.
An additional nondimensional number, the convective

Rossby number Roc, characterizes the relative strength of
buoyancy and Coriolis forces. It may be expressed in terms of
the other three control parameters as

( )E
Ro

Ra

Pr
, 15c

F
2

º
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and it provides an a priori estimate of the degree to which
rotation influences the convection. Once the system has
equilibrated, that rotational influence can be measured directly
via the system-scale Rossby number Ro, namely,

˜
( )U

L
Ro ReEk

2
, 16= =

W

where Ũ is a characteristic velocity amplitude associated with
the equilibrated system and ŨLRe n= is the system-scale
Reynolds number. For Ũ , we adopt the rms convective velocity
amplitude, removing the azimuthally symmetric component
and taking the rms mean over the full spherical shell. A
complete list of parameters for all models is provided in
Tables 1 and 2. In addition, simulation checkpoints, system
snapshots, and time-averaged outputs for each model may be
accessed at https://osf.io/j275z/wiki/Dataset%20Listing/.

3. Results

3.1. Solar, Antisolar, and Transitional Regimes

As our goal is to examine the solar/antisolar transition, we
have classified all models described in Tables 1 and 2 as solar
(“S”), antisolar (“A”), or transitional (“T”). In addition to distinct
differential rotation profiles, the solar and antisolar states represent

two basins of attraction that possess distinct structuring of thermal
gradients and meridional circulation as well. We define a solar-
like state as possessing three characteristics:

1. An equator of prograde rotation and polar regions with
retrograde rotation in the rotating frame.

2. Polar regions that are warm relative to the equatorial
region.

3. Meridional circulations that possess multiple cells in
depth.

The antisolar state is defined as one that possesses:

1. An equator of retrograde rotation and polar regions that
rotate prograde in the rotating frame.

2. Polar regions that are cool relative to the warmer
equatorial regions.

3. Meridional circulations that are primarily monocellular
within a hemisphere.

The relationship between the meridional flow and the differential
rotation profiles stems from the fact that the meridional transport
of angular momentum must balance the convective Reynolds
stress in a steady-state system (Miesch & Hindman 2011;
Featherstone & Miesch 2015). Thermal profiles in the low-Ro,
solar-like regime are established due to the fact that such systems
tend to be in thermal-wind balance and possess columnar

Table 1
Physical Properties of Our Models with a Thin Convective Zone

Input Parameters Output Parameters

Name Angular Velocity Ω Ek Roc RaF Nr ℓmax Ro ℓpeak Solar/Antisolar DR

S1 1.44 × 10−6 s−1 1.78 × 10−2 2.07 1.35 × 104 128 255 0.45 6 A
S2 2.16 × 10−6 s−1 1.19 × 10−2 1.38 1.35 × 104 64 127 0.27 8 A
S3 2.87 × 10−6 s−1 8.95 × 10−3 1.04 1.35 × 104 64 255 0.18 21 T
S4 4.31 × 10−6 s−1 5.96 × 10−3 0.692 1.35 × 104 64 127 0.096 35 S
S5 5.74 × 10−6 s−1 4.48 × 10−3 0.519 1.35 × 104 64 255 0.06 44 S
S6 8.61 × 10−6 s−1 2.98 × 10−3 0.346 1.35 × 104 64 255 0.0316 46 S
S7 1.72 × 10−5 s−1 1.49 × 10−3 0.179 1.35 × 104 64 341 0.00815 40 S
S8 3.44 × 10−5 s−1 7.46 × 10−4 0.122 2.69 × 104 64 255 0.0042 50 S

Note. For all models presented, the inner radius rinner = 5.0 × 1010 cm, outer radius router = 5.88 × 1010 cm, shell aspect ratio χ = 0.85, and luminosity Lå = 0.74 Le
(where Le = 3.839 × 1033 erg s−1), except for S8, where we considered it to be 1.47 Le. Thermal diffusivity and viscosity are considered constant through the
convective layer, with values κ = ν = 4 × 1012 cm2 s−1. Simulation checkpoints, snapshots, and time-averaged outputs for each model are available at https://osf.io/
j275z/wiki/Dataset%20Listing/.

Table 2
Physical Properties of Our Models with a Thick Convective Zone

Input Parameters Output Parameters

Name Angular Velocity Ω Ek Roc RaF Nr ℓmax Ro ℓpeak Solar/Antisolar DR

L1 0.5 × 10−6 s−1 6.01 × 10−4 4.01 4.441 × 107 256 511 0.21 4 A
L2 0.97 × 10−6 s−1 3.10 × 10−4 2.06 4.441 × 107 256 511 0.10 5 T
L3 1.44 × 10−6 s−1 2.09 × 10−4 1.39 4.441 × 107 256 511 0.063 7 T
L4 1.8 × 10−6 s−1 1.67 × 10−4 1.11 4.441 × 107 256 511 0.052 9 S
L5 2.16 × 10−6 s−1 1.39 × 10−4 0.927 4.441 × 107 256 511 0.04 13 S
L6 2.87 × 10−6 s−1 1.05 × 10−4 0.698 4.441 × 107 512 511 0.0278 18 S
L7 5.74 × 10−6 s−1 5.24 × 10−5 0.349 4.441 × 107 512 511 0.011 30 S
L8 8.61 × 10−6 s−1 3.49 × 10−5 0.233 4.441 × 107 256 511 0.0064 38 S
L9 1.72 × 10−5 s−1 1.75 × 10−5 0.116 4.441 × 107 256 255 0.0022 48 S
L10 3.44 × 10−5 s−1 4.36 × 10−6 0.082 3.553 × 108 256 511 0.001 71 S

Note. For all models presented, inner radius rinner = 5.0 × 1010 cm, outer radius router = 13.16 × 1010 cm, shell aspect ratio χ = 0.38, and luminosity Lå = 4 Le.
Thermal diffusivity and viscosity are considered constant through the convective layer, with values κ = ν = 4 × 1012 cm2 s−1, except for L10, where we considered
κ = ν = 2 × 1012 cm2 s−1. Simulation data for each model are available at https://osf.io/j275z/wiki/Dataset%20Listing/.
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convection that transports heat more efficiently in the polar
regions (e.g., Brun & Toomre 2002; Matilsky et al. 2020). In
antisolar systems, convection is more efficient in the equatorial
regions, resulting in a warmer equator (e.g., Featherstone &
Miesch 2015).

Examples of these different states for the two different shell
geometries are illustrated in Figures 1 and 2. Antisolar states
are illustrated in the left column, solar-like states on the right,
and example transitional states are shown in the central
column. Intermediate regimes between the solar and antisolar
classes of behavior have previously been found in studies
examining the transition (e.g., Gilman 1977; Glatzmaier &
Gilman 1982; Aurnou et al. 2007; Gastine et al. 2013). For this
study, we define “transitional” to mean a system whose mean
thermal and/or flow profiles deviate from the definitions
provided above.

Featherstone & Miesch (2015) identified one example of
such an intermediate regime, characterized by solar-like
differential rotation occurring in the presence of a monocellular
meridional flow. Case S3 (Figure 1, central column) provides
another example. The meridional flow and latitudinal entropy
gradients satisfy the antisolar definition. The differential
rotation, however, is antisolar in the upper convection zone,
but solar like in the lower convection zone.

In our thick-shell models, transitional behavior seems to
appear in the thermal profiles. Case L3 (Figure 2) serves as one
example of this behavior. While its differential rotation and
meridional flow are clearly antisolar in nature, its specific
entropy profile is opposite of that expected for the antisolar
state and is instead akin to the solar state.

A close inspection of case L3 reveals a thin boundary layer
possessing a roughly antisolar-like specific entropy profile. As
Roc is increased further, this boundary layer gradually extends
throughout the domain (see Figure 3). Eventually, as in case
L1, the bulk of the domain possesses cool poles and a warm
equatorial region, though the region interior to the tangent
cylinder remains warm in the deep convection zone. While still
possessing some semblance of transitional behavior, we choose
to define L1 as “antisolar.” We note that a similar range in
Roc (and resulting Ro) is covered by the sets of models L1–L4
and S1–S4, which span the transition, but the thermal behavior
discussed above is only observed in the thick-shell models.

3.2. Connecting Mean Flows and Convective Structure

We find that the transition between the solar and antisolar
regimes can be described in terms of the convective structure as
characterized by its power spectrum. Following Featherstone &
Hindman (2016a), we consider the power spectrum associated
with horizontal flows, subtracting the contribution from
axisymmetric differential rotation and meridional circulation.
Namely, we consider the convective power Pℓ, defined as

( ) (∣ ( )∣ ∣ ( )∣ ) ( )P r u r u r . 17ℓ
m ℓ

ℓ

ℓ
m

ℓ
m

,
2

,
2

m 0

å= +q f
=-
¹

Here, the ( )u rℓ j
m
, are the complex coefficients resulting from the

expansion of velocity field components into Yℓ
mʼs on spherical

surfaces of radius r.
The convective power for our thin- and thick-shell models is

illustrated in Figures 4 and 5, respectively. Power has been
sampled near the upper boundary and time-averaged over at
least one-third of the viscous diffusion timescale in all cases.

Representative flow patterns from each series are also
illustrated in the top panels of these figures. With the exception
of cases S7 and S8, all spectra possess a single, broad peak
characterized by a central value ℓpeak. We measure the value of
ℓpeak by fitting the power-spectrum peak with a fourth-order

Figure 1. Fluid profiles for thin-shell cases in the antisolar (left column; S1),
transitional (central column; S3) and solar-like regimes (right column; S8).
Upper row: profiles of differential rotation (angular velocity Ω in the rotating
frame). Central row: stream lines of meridional mass flux with red (blue)
underlay indicating clockwise (counterclockwise) motion. Lower row: specific
entropy, with the spherical mean subtracted. All profiles have been averaged in
time and longitude. Antisolar cases exhibit rapidly rotating poles, monocellular
meridional circulation within each hemisphere, and a warm equatorial region.
Solar-like cases exhibit a rapidly rotating equator, multicellular meridional flow
within a hemisphere and warm poles. Transitional cases exhibit a combination
of solar and antisolar differential rotation, but otherwise possess antisolar
characteristics.

5

The Astrophysical Journal, 938:65 (12pp), 2022 October 10 Camisassa & Featherstone



polynomial in ℓ. Note that cases S7 and S8 possess multiple
secondary peaks, a common feature for systems near
convective onset (Hindman et al. 2020).

In both series, as Roc is decreased, peak spectral power
occurs at higher values of spherical harmonic degree ℓ. This
trend was also observed in Featherstone & Hindman (2016a). It
arises from the tendency of rotating convection to organize into
columnar structures with increasingly smaller cross-sectional
diameter as the Rossby number is decreased (e.g., Busse 2002).

In Figure 6, we illustrate the relationship between the
convective spatial scale and the solar/antisolar transition.

There, we present our simulation results in terms of the control
parameter Roc and the resulting convective scale ℓpeak. We
also include data from Featherstone & Hindman (2016a) and
Hindman et al. (2020). Those models possessed a polytropic
background state identical to the models presented here, but
with an intermediate convection-zone thickness of χ= 0.76.

Figure 2. Same as Figure 1 but depicting a selection of models with thick
convection zones (L1, L3, and L10). Transitional behavior is observed in the
specific entropy profile, which retains aspects of low-Roc behavior at depth
even as the differential rotation and meridional circulation are antisolar in
nature.

Figure 3. Profiles of specific entropy for a series of thick-convection-zone
models spanning the solar/antisolar transition. As in Figures 1 and 2, profiles
have been averaged in longitude and time, and the spherically symmetric mean
has been subtracted. Case L4 possesses a solar-like differential rotation, where
cases L1, L2, and L3 possess antisolar differential rotation. The transition to an
antisolar thermal state is a much broader function of Roc than the transition
associated with differential rotation in these models. The cool-pole/warm-
equator configuration of the antisolar state manifests first in the upper boundary
layer and becomes deeper as Roc is increased.

Figure 4. Variation of the convective structure as a function of the convective
Rossby number Roc for the thin-shell models in this study. Upper panels:
snapshots of radial velocity vr taken near the outer boundary (r/router ∼ 0.99)
of three representative models (S2, S6 and S8) with a thin convection zone.
Upflows are colored in red and downflows are colored in blue. Lower panel:
time-averaged spherical harmonic spectra of the horizontal convective velocity
power Pℓ plotted for all thin-convection-zone models, computed at
r/router ∼ 0.99. As Roc decreases, the spectral power peaks at higher ℓ values
and the associated convective structures (upper panel) become thinner in
azimuth. Models S7 and S8 are near convective onset and evince multiple
prominent convective peaks as a result.
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The models of Hindman et al. (2020) were originally
classified based on their convective, rather than mean-flow,
structure. We have found that many of the more laminar
models, classified as “equatorial columns” and “modulated
convection,” largely fall into either the solar or transitional
regimes. In generating Figure 6, we reclassified those results
according to the criteria described above, omitting data from
eight models: model numbers 6–9, 17, 18, 29, and 30. The
steady-state mean flows in those systems (all near convective
onset) were difficult to characterize with certainty due to strong
but slowly varying hemispheric asymmetries in their flow and
thermal profiles.

As in Gastine et al. (2014), we find that the transition
between solar-like (red symbols) and antisolar differential
rotation (blue symbols) occurs when Roc is roughly unity. We
also find that the transition is equally well characterized by the
point at which the dominant convective spatial scale is roughly
equal to the shell depth. Namely, the transition occurs when the
characteristic convective wavelength and the shell depth differ
by half a wavelength, such that

( )ℓ ℓ 2, 18peak shell=

where

( )ℓ r L2 , 19shell outerp=

and where L is the shell depth. As discussed, for those models
in the low- and intermediate-Ro regimes, the spatial scale ℓpeak
is associated with convective columns. The constraint in
Equation (18) thus indicates that the transition occurs when the
shell depth and the characteristic convective column diameter,
which is half the convective wavelength, are equal. This is the

central result of this paper, and to our knowledge, it has not
been noted or discussed before. In the following section, we
discuss why this geometric constraint is to be expected and
explore how it relates to the equivalent and more widely
reported Roc= unity criterion for the transition.

4. Interpretation

The link between shell depth, convective spatial scale, and
the solar/antisolar transition can be understood by considering
the convective transport of angular momentum in the high- and
low-Ro regimes. The specific angular momentum about the z-
axis, , is given by

( )
v

, 202
0 ⎜ ⎟

⎛
⎝

⎞
⎠

l
l

= W +
á ñf

where r sinl q= is the cylindrical radius, and Ω0 is the frame
rotation rate. Ignoring viscous and Lorentz torques, the time
evolution of the zonally averaged  is described by

· · ( )F v
t

. 21RS
 r¶
¶

= - - á ñ

Here, FRS is the convective Reynolds stress, defined as

( )v v , 22rlá ¢ ¢ñf

where the angular brackets indicate a zonal (azimuthal)
average, and where the primed quantities indicate fluctuations
about the zonal average.
In a steady state, the two terms on the right-hand side of

Equation (21) balance, providing a direct link between the
structure of meridional flow 〈vr, vθ〉 and the convective flow
structure (see, e.g., Miesch & Hindman 2011; Featherstone &
Miesch 2015). In principle, the steady-state balance provides
no information concerning the resulting, equilibrated differ-
ential rotation profile. Equation (21) does, however, illustrate
the centrality of convective structure and amplitude, through
the Reynolds stress it drives, to the redistribution of angular
momentum.
The relation between convective structure and Reynolds

stress to the transition is discussed in detail in Aurnou et al.
(2007), who note an important difference between angular-
momentum transport in high-Ro and low-Ro convection. In the
high-Ro regime, the Reynolds stress is predominantly directed
radially inward, and convective flows work to mix angular
momentum throughout the domain. This mixing is further
enhanced by the strong meridional circulations driven by that
convection (e.g., Gilman 1977; Featherstone & Miesch 2015).
A system in solid-body rotation possesses most of its angular

momentum in the equatorial regions, and so a uniform
redistribution of that angular momentum requires a spin-up at
the poles and a slow-down at the equator. The result is an
antisolar differential rotation. In practice, a perfectly mixed
state is never fully achieved in simulations, owing to the
countervailing effects of meridional and viscous transport (e.g.,
Featherstone & Miesch 2015).
In the low-Ro regime, convection is markedly anisotropic in

nature (e.g., Zhang 1992; Busse 2002). In such systems,
convection organizes into columnar rolls that exhibit a
preferred “tilt” in the eastward (positive f) direction. This
tilting results from the tendency of columnar upflows and
downflows to conserve potential vorticity as they approach or

Figure 5. Same as Figure 4, but for those models with a thick convective zone.
Upper row: representative radial velocity sampled near the outer boundary
(r/router ∼ 0.99) for three selected thick-convection-zone models. Lower panel:
time-averaged convective power Pℓ for all thick-convection-zone models
examined in this study.
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descend from the spherical boundary (see also the discussion in
Aurnou et al. 2007). These tilted flow structures establish a
positive correlation between flows moving outward (inward)
from the rotation axis and flows moving in the positive
(negative) f-direction. A net angular-momentum transport
away from the rotation axis results, and so low-Ro convection
tends to speed up the equator until it is counterbalanced by
meridional or viscous transport.

The Reynolds stresses arising from a selection of our thick-shell
models are shown in Figure 7. There, we decompose the
longitudinally averaged convective Reynolds stress into cylindrical
coordinates (s, z), where the radial direction ŝ is perpendicular to
the rotation axis and where ẑ is parallel. In the low-Ro models L8
and L10, the Reynolds stress is predominantly orthogonal to the
rotation axis and directed cylindrically outward. While transport in
the perpendicular z-direction is present, its amplitude is weaker by
roughly one order of magnitude.

This situation contrasts with that arising in the transitional
and high-Ro regimes represented by models L3 and L1,
respectively. There, convection preferentially transports angu-
lar momentum inward, both toward the rotation axis and
toward the equatorial plane, with little difference in amplitude
between the s and z transport. Only in the low-Ro systems is a
strong anisotropy in angular-momentum transport realized.

We further illustrate this behavior schematically, alongside
instantaneous snapshots of the fluid, from a selection of our
thin-shell simulations in Figure 8 (see also Figure 3 of Simitev
et al. 2015). There we show three models, with Roc values
ranging from 0.346 to unity (the point of the transition). At low
Roc, convective flows (as visualized in equatorial cuts of z
vorticity, ωz) exhibit noticeable prograde tilting such that flow
patterns near the outer boundary are shifted eastward relative to
the lower boundary. As a result, the radial component of the
Reynolds stress in the low-Roc-regime (Figure 8, center row) is
primarily positive. The coherence of this correlation gradually
diminishes as Roc increases and convective cells approach an

aspect ratio of unity at Roc= 1, beyond which point most
spatial coherence is lost.
When this key element of anisotropic angular-momentum

transport is lost, there is no additional source of anisotropy

Figure 6. Solar, antisolar, and transitional behavior for all models considered in this study, displayed as a function of characteristic convective wavenumber ℓpeak and
Roc. The value of ℓpeak has been normalized by ℓshell/2, the wavenumber associated with twice the shell depth. Circles and triangles indicate data previously reported in
Hindman et al. (2020) and Featherstone & Hindman (2016a), respectively. As found in prior studies, Roc = 1 delineates the transition between solar and antisolar
behavior. The transition is equally well characterized by the point at which the characteristic convective wavelength is equal to twice the shell depth (i.e., when ℓpeak

and ℓshell/2 are equal).

Figure 7. Convective Reynolds stress, decomposed into cylindrical coordi-
nates, as realized in a selection of thick-shell models. Profiles have been
averaged in longitude and time. Upper row: component of Reynolds stress in
the cylindrical radial direction (Fs) for models in the antisolar, transitional and
solar-like regimes. Lower row: corresponding view of the z-component (Fz).
Low-Ro systems exhibit strong transport of angular momentum away from the
rotation axis, but only weak transport in the parallel direction. Transitional and
high-Roc systems possess strong transport in both directions, tending to
transport angular momentum both inward toward the rotation axis and toward
the equatorial plane. Strong anisotropy between the two directions arises only
in the low-Roc systems.
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available to establish a rapidly rotating equator. We suggest
that this loss of correlation can be understood from a geometric
standpoint. For a columnar convective cell to exhibit tilting, its
size in the f dimension must be less than its extent in depth.
Once its horizontal extent is equivalent to the shell depth and
the cell attains an aspect ratio of 1, this situation is no longer
possible. At that point, for the columnar structure to exhibit
tilting, its extent in depth would need to exceed the depth of the
convective layer. In the next subsections, we explore the
relationship between this geometric view of the transition and
the Roc= unity criterion that has been identified previously.

4.1. Characteristic Timescales

First, we consider some relevant timescales and their
relationship to our nondimensional control parameters. The
viscous and thermal diffusion timescales across the layer, τν
and τκ, respectively, are given by

( )L
23

2
t

n
=n

and

( )L
, 24

2
t

k
=k

where, again, L is the shell depth. The Coriolis timescale τΩ is
given by

( )1

2
, 25t =

W
W

and the timescale τff for a fluid parcel to freely fall across the
domain depth given by

ˆ ( )L g . 26fft =

Here, ĝ is the effective gravitational acceleration due to
buoyancy, namely

ˆ ( )g g , 27
r
r

=
¢

where g is the gravitational acceleration, r¢ is a characteristic
density perturbation, and r is the background density.
Using ĝ, we write the Rayleigh number Ra in general form

as

ˆ ( )gL
Ra Pr . 28

ff ff

3

2

2

⎜ ⎟
⎛

⎝

⎞

⎠nk
t t
t

t
t

= = =n k n

This form of Ra can be used regardless of the particular
expression adopted for the relative density perturbation. For the

Figure 8. Changing convective flow structure as the solar/antisolar transition is approached. Upper row, (a)–(c): snapshots of the z component of vorticity, weighted
by density, in the equatorial plane for thin-shell cases with three different values of Roc. A common color scaling has been adopted for all three models. Center row,
(d)–(f): companion view of the corresponding convective Reynolds-stress correlation v vrr ¢ ¢f. As in the upper row, a common color scale has been adopted. Lower row,
(g)–(i): schematic of convective flow pattern at each Roc, sketched in the equatorial plane. Blue arrows indicate the direction of angular-momentum transport due to
convective Reynolds stress in cases S4 and S6. As Roc approaches unity, columns become wider and the prograde tilting becomes less pronounced. At an Roc of unity,
the convective scale is approximately equal to the layer depth, and tilting is no longer possible. The correlations in vr¢ and v¢f required to transport angular momentum
equatorward are lost as a result.
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anelastic, fixed-flux models presented here, we have chosen to
write the relative density perturbation as

˜
˜ ˜ ( )FL

c T
. 29

p

r
r r k
¢
=

This yields Equation (14) for RaF, where the subscript F is used
to indicate that a flux-based scaling was adopted for the density
perturbations. In a Boussinesq fluid, with a fixed temperature
contrast ΔT used as the relevant temperature scale, the density
scale is typically chosen such that

( )T , 30
r
r

a
¢
= D

where α is the coefficient of thermal expansion. That
prescription recovers the canonical expression

( )g TL
Ra . 31

3a
nk

=
D

We can similarly recast Ek and Roc in terms of characteristic
timescales. We have

( )
L

Ek
2

32
2

n t
t

=
W

=
n

W

and

( )Ro Ra Ek Pr , 33c
ff

2 t
t

= = W

which will be useful in the analysis that follows.

4.2. Vorticity Dynamics

Using Equation (33) in combination with the vorticity
equation, we now seek to relate Roc to the convective spatial
scale and the layer depth. We consider a fluid in the so-called
Coriolis-Inertial-Archimedean (CIA) balance wherein viscous
effects can be ignored, and the dominant force balance is struck
between buoyancy, inertial, and Coriolis forces. For a system in
such a balance, the characteristic horizontal wavenumber of
convection scales in proportion to Ro−1/2 (see, e.g., Ingersoll
& Pollard 1982; Featherstone & Hindman 2016a; Aurnou et al.
2020).

This balance is realized in many of the models considered in
this paper, as illustrated in Figure 9(a). There, we plot the
variation of ℓpeak for all models considered in this study. The
logarithm of the reduced Rayleigh number Ra

*

=RaF Ek
4/3 is

indicated graphically by the symbol shading such that symbols
with lighter shading have lower values of Ra

*

. As this
parameter is increased, the convective length scale tends
toward the Ro−1/2 curve, a fact also noted in Hindman et al.
(2020).

We note that this trend in the scaling of convective length
scale is not completely unambiguous. As illustrated in
Figure 9(b), all solar-like models, regardless of Ra

*

, possess
convective length scales that vary in accordance with the
Ek−1/3 scaling associated with the convective onset
(Chandrasekhar 1953). We find that only those models with
Ra

* � 10 exhibit a dual scaling.
Motivated by the fact that many of our models exhibit

behavior consistent with CIA balance, we now examine the
transition from an inviscid viewpoint. Ignoring viscous effects
and considering the z component of the vorticity equation, we

have that

· ( )v
v

z
2 . 34z

zwW
¶
¶

~

Considering a columnar convective cell, we take the axial (z)
dimension of the column to be the shell depth L. Denoting the
column diameter (i.e., the length scale perpendicular to the
rotation axis) by D, we have

˜ ˜ ( )v

L

v

D
2 , 35

2

2
W ~

which reduces to

˜ ( )D
v L

2
362 ~

W

for some characteristic velocity amplitude ṽ. By considering
the solar/antisolar transition, we are implicitly considering a
point of transition between the slowly rotating and rapidly
rotating regimes of convection. As discussed in Aurnou et al.
(2020), there are two choices for ṽ corresponding to these two
limits. In the slowly rotating limit, the flow speed is well-
approximated via a freefall scaling such that

˜ ( )v
L

. 37ff
fft

~

Figure 9. Scaling of the normalized peak convective wavenumber 2 ℓpeak/ℓshell
with respect to the (a) system-scale Rossby number Ro and (b) Ekman number
Ek for all models considered in this study. A solid gray reference line at
2 ℓpeak/ℓshell = 1 has been plotted in each panel. The mean-flow classification is
indicated by symbol color. Symbols are shaded based on the logarithm of the
reduced Rayleigh number Ra

*

= RaF Ek
4/3. Lower (higher) values of Ra

*

are
indicated by lighter (darker) shading. As Ra

*

increases, models in the solar-like
regime tend toward the dashed Ro−1/2 reference line associated with the CIA
balance. Regardless of the degree of supercriticality, solar-like models tend to
follow the Ek1/3 onset scaling as indicated by the dashed reference line in
panel (b).
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Alternatively, in the rapidly rotating limit, a thermal-wind
scaling for ṽ is a more appropriate choice. Namely,

˜ ˆ ( )v g
L

, 38TW
ff ff

⎜ ⎟⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
t

t
t
t

~ =W
W

which differs from the freefall estimate by a factor of Roc.
Proceeding with the rapidly rotating choice, the constraint that
a convective column has a diameter equal to the layer depth
becomes

( )L D
L L

L
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ff ff
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which holds when

( )Ro 1. 40
ff

c
t
t

= =W

A similar result is obtained when adopting a freefall scaling for
ṽ , but the Roc factor arising in Equation (39) is no longer
squared.

The estimate of Equation (40) ignores prefactors of order
unity but nevertheless provides a link between the comple-
mentary views of the solar/antisolar transition illustrated
through Figure 6. It is interesting to note that while Figure 6
indicates a clear dependence on the shell depth, Roc= 1 serves
as an apparently shell-depth-insensitive marker of the trans-
ition. This fact was also noted by Gastine et al. (2014), who
considered results from studies that employed different shell
depths, as well as different boundary conditions and fluid
approximations. The reason for this can be seen in the
expression for Roc in terms of the timescales provided by
Equation (33). Roc implicitly contains information regarding
the shell depth and the fluid approximation employed via τff.

5. Summary and Perspectives

Through this work, we have examined the relationship between
the convective spatial scale, the convection-zone depth, and the
solar/antisolar transition. Our numerical results suggest that the
transition occurs when the dominant convective wavelength is a
factor of 2 larger than that associated with the convection-zone
depth. Motivated by the anisotropic nature of low-Ro convective
Reynolds stress, we suggest the transition can be understood in
terms of the flow correlations established by columnar convective
structures that naturally arise in rapidly rotating regimes. As the
moderate-Ro, slowly rotating regime is approached, the char-
acteristic columnar size exceeds the depth of the convective layer,
and the structure can no longer manifest. The transport of angular
momentum becomes increasingly isotropic as a result, leading to
an antisolar differential rotation. This criterion of the transition is
complementary to the previously identified Roc= unity criterion.
When considered in terms of the CIA force balance, the spatial-
scale criterion can be used to arrive at the Roc= unity criterion.

All models presented in this study were run with a Prandtl
number of unity. While we see no obvious reason why this
parameter would fundamentally impact the geometric picture
presented here, we could but speculate on the effects of that
control parameter based on this survey of models. We note that
the study of Gastine et al. (2014), incorporated results from
models possessing Pr with values less than unity and found that
they too transitioned at Roc= 1. We also point the reader to the
recent work of Käpylä (2022). That study examined a range of

Pr values, and it found that the transition point shifted for
Pr> 1 models that incorporated magnetism. The inclusion of
magnetism, which can alter the flow structure, makes a
straightforward comparison against the results presented here
difficult, but it is interesting to ask how its effects may impact
the picture presented here.
Magnetic effects are of particular interest due to the possible

link between the solar/antisolar transition and observations of
Ro-dependent changes in magnetic topology and activity in
low-mass stars (e.g., Brandenburg & Giampapa 2018; Lehtinen
et al. 2021). Studies incorporating magnetism have largely
focused on dynamo behavior and the Roc point of the
transition, but changes in the convective spectrum, induced
by magnetism, can be seen in the results of Simitev et al.
(2015). This effect becomes particularly pronounced when the
characteristic spatial scale of magnetism is small with respect to
that realized by the convection (Hotta & Kusano 2021; Hotta
et al. 2022). In those results, the amplitude of convective power
is diminished in the presence of magnetism, and the dominant
spatial scale of the convection shifts to higher-order wave-
numbers. It thus seems likely that including magnetism leads to
a decoupling between the value of Ro from Roc. This effect
was observed in the magnetic study of Mabuchi et al. (2015).
While that work did not consider the convective length scale
explicitly, it demonstrated that the system-scale Ro associated
with the transition remained unchanged in the presence of
magnetism. The transitional value of Roc, however, was modified.
We conclude by noting that our results bear some relation-

ship to the so-called “convective conundrum,” a term given to a
set of problems related to disagreements between models and
observations of the Sun’s convective flow structure and speed
(e.g., O’Mara et al. 2016). One aspect of this problem is that
models driven toward ostensibly more solar-like conditions
(i.e., higher Rayleigh and lower Ekman numbers) tend to
develop an antisolar differential rotation. This appears to be
linked to an excess in convective power at large scales in many
models.
Solar convection-zone models with differential rotation

approximating that of the the Sun tend to possess substantial
convective power on large spatial scales (typically only
somewhat smaller than the convection-zone depth; ℓ≈ 20).
This is not borne out in observations, however. In the solar
photosphere, convective power instead peaks on the much
smaller spatial scale of supergranulation (ℓ∼ 100; e.g., Hart
1956; Leighton et al. 1962; Rincon & Rieutord 2018). Larger-
scale photospheric flows are much weaker and tend to be
dominated by inertial waves (Hathaway & Upton 2021; Gizon
et al. 2021). Helioseismic analyses of convective flows at depth
remain inconclusive; some indicate a substantial large-scale
convective power, and others a lack thereof (Hanasoge et al.
2012; Greer et al. 2015; Proxauf 2021).
Several solutions to the conundrum have been proposed for

the apparent lack of large-scale power, including rotational
influence on the convection (Featherstone & Hindman 2016a;
Vasil et al. 2021), a convection zone that is weakly subcritical
(Brandenburg 2016), and Lorentz torques arising from small-
scale magnetism (Hotta & Kusano 2021). Our results provide a
new, though not particularly illuminating, constraint on the
solar convective structure. Namely, given the nature of the
Sun’s differential rotation profile along with the fact that it does
not appear to be transitional in nature, we do not expect to see a
substantial convective power on scales commensurate with the
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convection-zone depth. Improved observations of the deep solar
meridional flow, novel experimental studies (e.g., Koulakis et al.
2018), and better constraints on the solar convective structure,
such as might be achieved via observations of the Sun’s polar
regions, may provide additional insight into these topics.
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