In the format provided by the authors and unedited.

The inside-out planetary nebula around a bornagain star

Martín A. Guerrero^{1*}, Xuan Fang², Marcelo M. Miller Bertolami^{3,4}, Gerardo Ramos-Larios⁵, Helge Todt⁶, Alexandre Alarie⁷, Laurence Sabin⁷, Luis F. Miranda¹, Christophe Morisset⁷, Carolina Kehrig¹ and Saúl A. Zavala⁸

¹Instituto de Astrofísica de Andalucía, IAA-CSIC, Granada, Spain. ²Laboratory for Space Research & Department of Physics, Faculty of Science, The University of Hong Kong, Hong Kong, People's Republic of China. ³Instituto de Astrofísica de La Plata, UNLP-CONICET, La Plata, Argentina. ⁴Facultad de Ciencias Astronómicas y Geofísicas, UNLP, La Plata, Argentina. ⁵Instituto de Astronomía y Meteorología, Departamento de Física CUCEI, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico. ⁶Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany. ⁷Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Baja California, Mexico. ⁸Tecnológico Nacional de México/I.T. Ensenada, Departamento de Ciencias Básicas, Ensenada, Baja California, Mexico. *e-mail: mar@iaa.es

The inside-out planetary nebula around a $\left[\mathrm{WC}\right]$ star in the making

VIII sequences.								
Initial Mass	Н	⁴ He	$^{12}\mathrm{C}$	$^{13}\mathrm{C}$	$^{14}\mathrm{N}$	$^{16}\mathrm{O}$	$^{20}\mathrm{Ne}$	²² Ne
IRAS 17514	0.01 - 0.05	$0.33 {\pm} 0.10$	$0.50 {\pm} 0.10$		0.01	0.1	0.04	
$0.8 M_{\odot}$	0.030	0.52	0.30	0.041	0.016	0.086	9×10^{-5}	1×10^{-3}
$0.9~M_{\odot}$	5×10^{-3}	0.48	0.29	0.069	0.065	0.091	9×10^{-5}	9×10^{-4}
$1.0 \ M_{\odot}$	5×10^{-5}	0.40	0.34	0.074	0.056	0.116	$9{ imes}10^{-4}$	0.01
$1.1 \ M_{\odot}$	5×10^{-3}	0.38	0.37	0.059	0.028	0.145	9×10^{-4}	0.01
$1.25 \ M_{\odot}$	5×10^{-6}	0.41	0.33	0.067	0.047	0.133	$9{ imes}10^{-4}$	0.01

Supplementary Table 1.– Chemical abundances of IRAS 17514 and low-mass VLTP sequences.

Supplementary Figure 1.– Position-velocity (PV) maps of the H α emission line from the outer shell of HuBi 1 as observed through a long-slit placed on the CSPN at PA 90° (a) and PA 0° (b). The line intensity is shown in grey-scale and contours. The spatial origin corresponds to the position of the CSPN, whereas the radial velocities are relative to the systemic velocity of the nebula of +64.8 km s⁻¹ as measured in the local standard of rest (LSR).

Supplementary Figure 2. Optical spectrum of IRAS 17514 (blue) superimposed by the best-fit PoWR model (red). The identifications of key lines are labeled.

Supplementary Figure 3.– NOT ALFOSC grism #7 (black) and #14 (blue) spectra of the outer (a) and inner (b) shells of HuBi 1. The insets show the spectral range including the H α , [N II] $\lambda\lambda$ 6548,6584, and [S II] $\lambda\lambda$ 6717,6731 emission lines. Note the singular detection of the He II λ 4686 emission line in the inner shell.

Supplementary Figure 4.– Time-evolution of the electron temperature T_e , hydrogen ionization fraction H⁺/H, and emissivity of the H β , He I λ 5876, [O II] λ 3727, [O III] λ 5007, [N II] λ 6584, and [S II] $\lambda\lambda$ 6716,6731 emission lines of a photo-ionized cloud of gas with solar abundances, electron density of 200 cm⁻³ and electron temperature of 10,000 K after the ionizing source is switched off at time t=0.

Supplementary Figure 5.– VLTP sequences of low-mass stars. (left) Evolution of the stellar sequences in the HR diagram, where the red-cross indicates the location of the central star of HuBi1 with uncertainties as inferred from our best-fit non-LTE model (see the details of the non-LTE model fit). (right) Effective temperature evolution of the same sequences during the departure from the AGB and after the VLTP event (set at t=0).

Supplementary Figure 6.– Predicted T_{eff} evolution of our 1.1 M_{\odot} sequence after the VLTP event under different assumptions of the mass-loss rate through winds during the born-again AGB phase. The legend indicates the mean envelope mass removed per year at log $T_{eff} < 3.8$.