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AB S TRACT

Theories with varying gravitational constantG have long been studied. Among them, the most

promising candidates as alternatives to standard general relativity are known as scalar±tensor

theories. They are consistent descriptions of the observed Universe as well as the low-energy

limit of several pictures of uni®ed interactions. Thus, increasing interest in the astrophysical,

gravitational wave and pulsar evolution consequences of such theories has been sparked over

the last few years. In this work we study the evolution of white dwarf stars in the framework of

the simplest model of scalar±tensor theory: Brans±Dicke gravity. We assume that the star is

able to see the cosmological evolution of G (obtained from relativistic equations) while

adopting a Newtonian model for describing its structure. This allows us to determine how the

G variation affects the energetics of the stellar interior. The white dwarfs are analysed

employing a well-tested computer code, with state-of-the-art data for the equation of state,

opacities, neutrinos, etc.; all these characteristics are carefully described in the text. We

compute the theoretical white dwarf luminosity function and use previous observational data

to compare with and extract conclusions on the feasibility of the gravitational theory analysed.

We ®nd several striking results. The cooling of white dwarfs is strongly accelerated,

particularly for massive stars and low luminosities, even if the q parameter of Brans±Dicke

theory is big enough to accord well with any other test of gravitation. This uncommon cooling

process translates into several distinctive features of white dwarf evolution, among which are

(a) a new pro®le of luminosity versus fractional mass and age, (b) different central

temperature versus surface luminosity, (c) low masses of progenitors, and most importantly

(d) an appreciable variation in the luminosity function. We ®nally analyse the possibilities of,

when precise data with unique interpretation are available, converting this into a powerful new

test of gravitation.

Key words: gravitation ± methods: analytical ± stars: luminosity function, mass function ±

white dwarfs ± cosmology: theory.

1 INTRODUCTION

The idea of a varying gravitational constant G has been in physi-

cists' minds for a long time since Dirac (1937a,b) [see also

Chandrasekhar 1937; Kothari 1938; Teller 1948; and see Barrow

& Tipler (1986) for a comprehensive analysis of variation in the

fundamental constants] proposed what was called the large number

hypothesis. It states that the ubiquity of some large dimensionless

numbers of order 10
40
, arising from the combination of micro- and

macrophysical parameters, was not a coincidence but a result of an

underlying time variation in the combination e
2
G

ÿ1
mp, where e is

the unit charge andmp is the proton mass. Dirac himself ascribed to

a varying G and wrote this time variation into Newtonian expres-

sions. However, well-posed gravitational theories admitting a

variation in the fundamental constants had to wait for about

twenty years after these ideas, being mainly introduced by Brans

& Dicke (1961). They developed a relativistic theory of gravity

based on the existence of a scalar ®eld in a Riemannian geometry.

The gravitational constant was reborn as a ®eld variable by the

assignment G
ÿ1

� f�x� (below we shall see this in further

detail). Excluding some philosophical arguments concerning the

applicability of Mach's and Berkeley's visions of the Universe, one

of the ®rst motivations for the replacement of general relativity
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(GR) by a Brans±Dicke (BD) or generally by a scalar±tensor (ST)

theory was a seeming discrepancy between observations and the

weak-®eld GR predictions in the Solar system. Time went by and

these differences vanished, making the main motivation for these

gravitational arenas shift into a cosmological scenario.

In ST theories, the gravitational action has a free parameter q�f�,

called coupling function because it measures the strength of the

coupling between the ®eld and the metric. For particular values of

this parameter, these theories have cosmological solutions that are

entirely compatible with every gravitational test. Solar system tests

(Reasenberg & Shapiro 1976; Reasenberg et al. 1979; Will 1993),

gravitational lensing (Krauss &White 1992; Bekenstein & Sanders

1994) and nucleosynthesis (DomõÂnguez-Tenreiro & Yepes 1987;

Accetta, Krauss & Romanelli 1990; Casas, GarcõÂa-Bellido &

QuiroÂs 1992; Torres 1995; Kalligas, Nordvedt & Wagoner 1997;

Damour & Pichon 1998) are some of the frameworks where their

predictions were satisfactorily confronted with obtained data. Still,

as we shall soon see, these theories may have a crucial role in the

early Universe. The scalar ®eld f is a possible source for in¯ation

(Mathiazhagen & Johri 1984; La & Steinhardt 1989; Steinhardt &

Accetta 1990; Holman et al. 1991; Barrow &Maeda 1992; GarcõÂa-

Bellido, Linde & Linde 1994; Barrow 1995) and would modify any

form of expansion arising from the existence of other in¯ations.

Moreover, they are the low-energy limit of string theories (Fradkin

& Tseytlin 1985; Callan et al. 1985; Lovelock 1985) and scalar

®elds appear in multidimensional reduction (Berkin & Hellings

1994; Rainer & Zhuk 1996).

In Table 1 we show some examples of the bounds on ÇG=G [for a

recent confrontation between varying constants, theories and

experiments see the article by Will (1998)]. Many of them have,

however, several caveats. The knowledge of the asteroid belt is not

enough to determine precisely its in¯uence on some of the bounds.

The proper motion of a pulsar may affect other quoted numbers.

Cosmological nucleosynthesis is strongly model-dependent, as can

be seen from the appearance of the Hubble constantH. White dwarf

(WD) star cooling (a bound that will be discussed below) and

Bayesian statistical techniques applied to neutron masses may be

affected by a quasi-Newtonian treatment of G�t�. If the variation of

G is coupled with variation of other parameters as well, the limits

are more uncertain (Sisterna & Vucetich 1990a,b; Vucetich 1996).

In general, the conclusion is that, albeit severely constrained, a very

slow variation of G cannot be discarded, especially when cosmo-

logical time intervals are considered (Barrow 1987); a variation of

the fundamental constants of nature cannot be ruled out. An

example of this is the recent striking result concerning possible

time or space variation of the ®ne-structure constant (Webb et al.

1999).

ST theories give a consistent frame in which to study a G

variation. In the weak-®eld limit, Nordvedt (1968) found an

expression for the observed value of the gravitational constant,

G�t� � fÿ1 4� 2q�f�

3� 2q�f�

� �

: �1�

This yields

ÇG�t�

G
� ÿ Çf

3� 2q�f�

4� 2q�f�

� �

G�
2 Çq

�3� 2q�2

� �

: �2�

Thus, the observational limit implies that ifq! ¥ and Çqqÿ3
! 0

when t! ¥, the weak-®eld predictions for the present time will

accord well with the standard values. However, this does not

preclude that the theory may have signi®cant deviations from GR

at early cosmological times, nor that a very slow variation may have

occurred during the matter era.

Having arrived at this point, the scienti®c interest in ST theories

split into two (although not unique) basic branches. On one side, it is

now very important to investigate relativistic cosmological models

and to classify the different varieties of expanding universes and of

in¯ationary scenarios. This is necessary to explore their possible
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Table 1. Some bounds on ÇG=G �yrÿ1
�.

Method/Object ÇG=G < . . . Reference

Cosmological Nucleosynthesis 0.01 H 1

Radar Data (Mercury-Venus) 4 ´ 10ÿ10 2

Radar Data (Mars: Mariner 9) 1:5 ´ 10ÿ10 3

Radar Data (Mars: Mariner 10) 0:06 2:0 ´ 10ÿ12 4

Radar Data (Mars: Viking) 3 ´ 10ÿ11 5

Radar Data (Mars: Viking) 26 4 ´ 10ÿ12 6

Radar Data (Mars: Viking) ÿ26 10 ´ 10
ÿ12

7

Binary Pulsar (PSR 1913+16) ÿ1:106 1:07 ´ 10ÿ11 8

Pulsar-White Dwarf System (PSR B1855+09) ÿ96 18 ´ 10ÿ12 9

White Dwarfs Cooling (See discussion below) ÿ16 1 ´ 10ÿ11 10

Lunar Occultations and Eclipses 0:4 ´ 10
ÿ10

11

Laser Ranging Data (Moon) 0:3 ´ 10ÿ10 12

Solar Evolution ,10ÿ10 13

Neutron Star Masses and Ages ÿ0:66 4:2 ´ 10ÿ12 14

Paleontological Evidence ,10
ÿ11

15

Stability of Clusters 56 1 ´ 10ÿ11 16

References ± (1) DomõÂnguez-Tenreiro & Yepes (1987); Accetta, Krauss & Romanelli

(1990); Casas, GarcõÂa-Bellido & QuiroÂs (1992); Torres (1995); Kalligas, Nortvedt &

Wagoner (1997); (2) Shapiro et al. (1971); (3) Anderson et al. (1978); (4) Anderson et al.

(1991); (5) Hellings et al. (1989); Reasenberg (1983); (6) Hellings et al. (1983); (7)

Dickey, Newhall & Williams (1989); Shapiro (1990); (8) Damour, Gibbons & Taylor

(1988); (9) Kaspi, Taylor & Ryba (1994); (10) GarcõÂa-Berro et al. (1995); (11) Morrison

(1973); (12) Williams, Sinclair & Yoder (1978); (13) Chin & Stothers (1976); (14)

Thorsett (1996); (15) Sisterna & Vucetich (1990b); (16) Deaborn & Schramm (1974).



consequences upon the cosmic microwave background, nucleosynth-

esis, gravitational radiation and the spectrum of primordial perturba-

tions that give rise to the cosmic structure. To do this, it is desirable to

have exact cosmological solutions of the ®eld equations (we shall

present these equations below). Recently, a great improvement in the

search for these solutions has been given in the form of suitable

changes of variables. Barrow (1993) presented a method that enables

exact solutions to be found for vacuum- and radiation-dominated

Friedmann universes of all curvatures in arbitrary ST theories. Then,

and also for arbitrary q�f�, Barrow&Mimoso (1994) andMimoso&

Wands (1995) derived exact Friedmann±Robertson±Walker (FRW)

cosmological solutions in models with a perfect ¯uid satisfying the

equation of state p � �gÿ 1�r (with g a constant and 0# g# 2).

Application of these methods to a wide range of couplings was

recently made by Barrow & Parsons (1997). For more complicated

Lagrangians (with two free functions) these methods were also

generalized (Torres & Vucetich 1996; Torres 1997a,b). By no

means, however, are these the only solutions to these theories, a

subject that has been investigated for more than forty years.

The other branch of research is to try to determine what happens

to astrophysical objects ifG is a varying function. Most of the work

in this area has been focused on black holes and their thermo-

dynamics (see e.g. Campanelli & Lousto 1993; Kang 1996; Kim

1997). Previously, Hawking (1972) had proven that stationary black

hole solutions remain unchanged in ST gravity. On usual star

models, and as far as we are aware, Salmona (1967) was the ®rst

to present a theory of stellar structure in the presence of a scalar

®eld, showing that these theories are compatible with the usual

concepts. A number of other authors have investigated ¯uid

spheres, incompressible ¯uids and high-density situations (Hille-

brandt & Heintzmann 1974; Bruckman & Kazes 1977). The

gravitational collapse of a gaseous sphere (Thorne & Dykla 1971;

Matsuda&Nariai 1973) and the frequency shift of the radiation of a

collapsing object have been studied as well. Recently, Harada

(1998) has studied neutron stars, examining their stability. Their

collapse to a black hole and the process of scalarization was

analysed by Novak (1998a,b). The possibility of hiding in the

gravitational scalar the violation of the null energy condition

necessary to support a wormhole throat has also sparked interest

(Anchordoqui, Perez Bergliaffa & Torres 1997; Anchordoqui,

Grunfeld & Torres 1998; Nandi et al. 1998).

Probably the most dramatic effect of a varyingG is the concept of

gravitational memory (Barrow 1992, 1994). Barrow presented these

ideas by posing the following problem: What happens to black

holes during the subsequent evolution of the Universe if the

gravitational coupling G evolves with time? He envisaged two

possible scenarios. In scenario A, the black hole evolves quasi-

statically, in order to adjust its size with the changingG. If true, this

means that there are no static black holes, even classically,

during any period in which G changes. In the alternative

possibility, scenario B, the local value of G within the black hole

is preserved, while the asymptotic value evolves with a cosmo-

logical rate. The black hole remembers the strength of gravity at

the moment of its formation. Further analysis of the striking

phenomena that arise in both of these scenarios was made by

Barrow & Carr (1996). Being so general, the same scenarios may

concur for any long-lived object like a cosmic string or even the

usual hydrogen-burning stars. These concepts were also thoroughly

analysed within boson star models, where it was explicitly shown

that the variation ofGmodi®es the equilibrium structure of the stars

(Torres 1997a; Torres, Liddle & Schunck 1998a; Torres, Schunck&

Liddle 1998b).

When one considers a WD star, one has to deal with the fact

that their equilibrium con®gurations do not arise from the relati-

vistic ®eld equations, contrary to the boson star case. WDs are

not fully relativistic objects and the variation of G must be

imposed in a quasi-Newtonian way. Attempts to ascertain the

evolution and cooling processes of WDs in varying-G theories

was a subject started by Vila (1976) and recently continued by

GarcõÂa-Berro et al. (1995). Whilst understanding that a compre-

hensive study of the effects of a varying-G cosmology upon

astrophysical objects is far from being complete, it is the aim of

this work to study in detail the conclusions that may be obtained

from WD physics. The time variation of the Newton constant was

also proposed as a possible explanation of the discrepancy between

the cosmic expansion age and the globular cluster age (Degl'Inno-

centi et al. 1996).

To be speci®c, we shall study the problem of the evolution ofWD

stars in the frame of a speci®c theory of gravitation with a varying

G: Brans±Dicke. We shall compute the evolution of WDs employ-

ing a fully detailed and updated computer code, modi®ed in order to

include the effects induced by a varying G. After assuming a value

for the free parameter of the theory, this will allow us to construct

sequences of evolution forWDmodels of different masses and birth

epoch. Having these sequences we are in a position to compute the

theoretical WD luminosity function (the number of WDs with a

given luminosity per cubic parsec and per unit of luminosity;

hereafter WDLF). At present we know the observational WDLF,

and this will allow us to perform a detailed comparison between

them. In this way we shall show thatWDs are extremely sensitive to

a varying G value, and thus very powerful at imposing bounds on

the free parameters that ®x the variation of G and even discriminat-

ing between ÇG � 0 and ÇGÞ 0 theories.

Although we refer the reader to the next sections of this work for

details, we may give a simple physical reason for the sensitivity of

WD evolution to varying-G theories of gravitation. WDs have a

rather compact structure, and thus a relatively large gravitational

binding energy. Comparatively, they have a low thermal content

(relic of the thermonuclear reacting interior of the WD progenitor),

which implies a low luminosity. As the gravitational binding energy

is proportional to theG value, it is clear that a minute variation ofG

may even be able to dominate the WD energetic balance over its

internal thermal content. As a result, the cooling process will be

dramatically accelerated.

The rest of this paper is organized as follows: In Section 2, we

present the main characteristics of ST theories as a class of

gravitational theories. In Section 3, we describe the modi®cations

to the equation of energy conservation in the case of running G, the

numerical code we employed and also the initial models of

WDs from which we start our evolutionary sequences. In

Section 4, we comment on the procedure we follow to derive the

theoretical WDLF. The numerical results found in this study are

presented in Section 5. Finally, Section 6 is devoted to discussing

the implications of the present analysis on Brans±Dicke theory of

gravitation.

2 SCALAR ± TENSOR THEORIES : BAS IC

FORMALISM

There are, in fact, unlimited possibilities for constructing theories

of gravity, which involve a metric, matter ®elds and a scalar ®eld;

but a reduced set is obtained if we require that they be deducible

from a least-action principle and described by second-order differ-

ential equations (Bergmann 1968). From this group, ST gravity has

White dwarfs as a probe of gravitation 907
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the action

S �

�

�������

ÿg
p

16p
dx4 fRÿ

q�f�

f
¶mf ¶

mf� 16pLm

� �

: �3�

Here, as usual, gmn is the metric, R is the scalar curvature, f is the

Brans±Dicke (BD) ®eld,Lm is the Lagrangian of the matter content

of the system and q�f� is the coupling. The special case of a

constant q is BD theory, and general relativity is regained (although

this still needs further analysis for some particular situations) in the

limit of large q. The gravitational constant G of the Einstein±

Hilbert action is replaced by a dynamical ®eld, fÿ1. This enables

one to make a proper study of a varying gravitational strength.

Varying the action with respect to the dynamical variables gmn

and f we obtain the ®eld equations:

Rmn ÿ
1

2
gmnR �

8p

f
Tmn �

q�f�

f
f;mf;n ÿ

1

2
gmnf

;af;a

� �

�
1

f2
f;m;n ÿ gmnAf
ÿ �

;

�4�

Af �
1

2q� 3
8pT ÿ

dq

df
f;af;a

� �

; �5�

where we have introduced Tmn as the energy±momentum tensor for

matter ®elds and T as its trace.

We ®rst assess the likely cosmological variation of f, concen-

trating on BD theory. That is, we are interested in FRW solutions all

along the cosmic eras. During radiation domination, T � 0, and the

attractor behaviour is actually exactly that of general relativity,

namely a constant f and a ~ t
1=2. Here, a is the scale factor in a ¯at

FRW metric. This changes with the onset of matter domination,

when the attractor solution becomes (Nariai 1969; Gurevich,

Finkelstein & Ruban 1973)

a�t� ~ t
�2ÿn�=3; G�t� ~ t

ÿn
; �6�

where n � 2=�4� 3q�, thus G exhibits a slow decrease. Assuming

that matter±radiation equality took place near the general relativity

value1 at zeq � 24 000Q0h
2, then, for critical density and h � 0:5,

the fractional change in G since equality is

G�t0�

G�teq�
� 6000ÿ1=�1�q�

: �7�

For q � 400, the ratio is 0.98, so G will have changed value by

about 2 per cent since equality. This may differ of course for other

values of q. We recall, however, that weak-®eld tests imply

jqj > 500 (Reasenberg & Shapiro 1978; Reasenberg et al. 1979;

Will 1993). Thus, in the last gigayears of the Universe the value ofG

has stayed almost constant. Whether this very slow variation is

enough to produce a visible stellar signal will be explored in the rest

of this work. Before going to the results, we shall present how the

simulations were done and which was the gravitational input.

3 THE EVOLUTION OF WHITE DWARF

STARS WITH RUNNING G

We shall assume that BD theory (with different values of q) is the

correct theory of gravity and shall follow the evolution and cooling

ofWDs through the matter era. The value ofGwill be ®xed at every

time by the cosmological evolution of the BD theory, the solutions

of which were given above. Thus, we have a quasi-Newtonian

treatment of G. Its actual value is obtained from relativistic

cosmological equations but the stellar equations will be in the

Newtonian limit. If we recall the scenarios presented in the intro-

duction, we shall analyse both of them: the case in which the star

remembers a ®xed value of G, that valid at its formation; and the

case in which the star is able to see the cosmological evolution ofG

and its value changes with time.

The problem of the evolution ofWD stars in the case of varyingG

was previously addressed by Vila (1976) and by GarcõÂa±Berro et al.

(1995). Vila (1976) employed a rough analytical treatment of the

problem that, coupled to the lack of knowledge of the faint portion

of the WDLF at that time, prevented him from reaching a ®rm

constraint to ÇG. Much more recently, GarcõÂa±Berro et al. (1995)

considered the WD evolution assuming an exponential variation of

G along all the evolution, i.e. ÇG=G � constant. They were the ®rst to

establish upper bounds to the rate of change of G by employing the

observed WDLF. However, they employed a very simpli®ed (semi-

analytic) treatment for theWD by describing its evolution in terms of

an isothermal interior, and by neglecting the effect of the variation of

G in the structure of the stellar envelopes they considered. Finally,

they only considered the case of M� � 0:60M( at the moment of

comparing their results with the observed WDLF. In spite of the

approximations involved in such an approach, it is remarkable that

GarcõÂa±Berro et al. (1995) have found a very restrictive bound,

comparable to the best presently available (see Table 1).

3.1 The equation of energy conservation in the case of a

running G

In this subsection, we shall deduce the equation of energy con-

servation in the presence of a running G value. We shall proceed

following closely the treatment given in Kippenhahn & Weigert

(1990). Our approach at this stage follows that of Garcia-Berro et al.

(1995) [i.e. see our equation (19) and their equation (1)].

For the whole star we may write the conservation of energy as

d

dt
�En � Ei � Eg� � L� Ln � 0; �8�

where En, Ei and Eg are the nuclear, internal and gravitational

energies, and L and Ln are the photon and neutrino luminosities

respectively. The only term inwhichG appears isEg, and thus it will

give a contribution proportional to ÇG=G. The other terms may be

handled in the standard way, and we refer the reader to the book of

Kippenhahn & Weigert (1990, p. 23) for details.

It is well known that Eg may be written as

Eg � ÿ

�

GMr

r
dMr � ÿ3

�

P

r
dMr ; �9�

where Mr is the mass enclosed in a sphere of radius r, P is the

pressure and r is the mass density. The integral runs over the whole

stellar interior. Thus, ÇEg may be written as

ÇEg � ÿ3

�

ÇP

r
ÿ

P

r2
Çr

� �

dMr : �10�

In Lagrangian coordinates, the equation of hydrostatic equili-

brium reads

¶P

¶Mr

� ÿ
GMr

4pr4
�11�

thus ¶ ÇP=¶Mr is

¶ ÇP

¶Mr

�
ÇG

G

� �

¶P

¶Mr

�
GMr

pr5
Çr: �12�
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Barrow 1998), the exact value cannot be computed analytically (Torres &

Helmi 1996).



If we multiply by 4pr
3
dMr and integrate, the ®rst term on the RHS

of equation (12) is

ÇG

G

� �
�

4pr3
¶P

¶Mr

dMr �
ÇG

G

� �

Eg; �13�

whereas the LHS of equation (12) can be reduced to
�

4pr3
¶ ÇP

¶Mr

dMr � ÿ3

�

ÇP

r
dMr �14�

and thus

ÿ3

�

ÇP

r
dMr �

ÇG

G

� �

Eg � 4

�

GMr

r2
Çr dMr : �15�

But ÇEg may also be expressed as

ÇEg �
ÇG

G

� �

Eg �

�

GMr

r2
Çr dMr: �16�

From the last two equations we obtain

ÿ3

�

ÇP

r
dMr � 4 ÇEg ÿ 3

ÇG

G

� �

Eg: �17�

If we replace this in equation (10), we ®nd that ÇEg can also be

written as

ÇEg � ÿ

�

P

r2
Çr dMr �

ÇG

G

� �

Eg: �18�

The ®rst term on the RHS of equation (18) is the standard one,

whereas the second term arises from the assumption of a running G

value. Consequently, in a differential form, the equation of con-

servation of energy for a runningG value (apart from a contribution

from the release of latent heat during crystallization) is

¶Lr

¶Mr

� «ÿ «n ÿ Cp

¶T

¶t
�

d

r

¶P

¶t
�

ÇG

G

� �

GMr

r
; �19�

where « is the nuclear energy release, «n is the energy lost in

neutrino emission, Cp is the speci®c heat at constant pressure and

d � ¶ ln r=¶ ln TjP.

The last term in equation (19) describes the change in the

gravitational binding energy of the star as a result of the change

in theG value. If we assume some theory of gravitation that predicts
ÇGÞ 0, the gravitational binding energy of the star is so large that,

even in the case of very slow variations, their product makes a non-

negligible contribution to the energy balance of the star. It is worth

mentioning that the remaining equations of stellar structure and

evolution have their usual form, but if we assume (as done in most

of this work) that the star is able to feel the varyingG value, we need

to consider the particular G value corresponding to the cosmologi-

cal age. It is important to note that, if theWD is able to remember its

G value at birth, its evolution would be hardly distinguishable from

that corresponding to the standard case with ÇG � 0.

The net effect of the term including ÇG is simple: as a consequence

of the decrease inG, the star in¯ates and it absorbs a large amount of

energy that otherwise would have been released as electromagnetic

radiation. Consequently, the process of cooling is strongly acceler-

ated. This effect is more noticeable the lower the value of q (i.e. the

larger is the value of ÿ ÇG) and the earlier the WD birth occurs.

An interesting consequence of such a term is that the evolution of

a star depends on the time of its birth, which is not the usual case.

This is simply because the function describing the trend of ÇG is

dependent upon the cosmological time and not upon the stellar

evolution one. In other words, the differential equations of stellar

evolution are no longer invariant under temporal translations. This

is not a minor effect, as will be made clear below.

3.2 The numerical code and initial models

TheWDevolutionary codewe employed in this study has been used

to study different problems connected with WD evolution, and it is

fully described in Althaus & Benvenuto (1997), Benvenuto &

Althaus (1997, 1998) and references cited therein. The code is

based on the technique developed by Kippenhahn, Weigert &

Hofmeister (1967) for calculating stellar evolution. In particular,

to specify the surface boundary conditions we carry out three

envelope integrations (at constant luminosity) from photospheric

starting values inward to a ®tting mass fraction M1=M� < 10ÿ16,

whereM1 corresponds to the ®rst mass shell andM� is the total mass

of the model. In our code the value ofM1 is automatically changed

over the evolution so as to keep the thickness of the envelope as

small as possible. This provides an accurate description of the outer

layers of our WD models. The interior integration is treated

according to the Henyey iterative scheme as described by Kippen-

hahn et al. (1967).

To compute the evolution of WDs in the frame of the Brans±

Dicke theory of gravitation, we carried out some modi®cations to

our code in order to take into account the variation of the value ofG

self-consistently. In particular, the full system of differential equa-

tions of stellar evolution are now solved considering the equation

for the energy balance given by equation (19). To our knowledge,

this is the ®rst time the evolution of WD stars with a running value

for the gravitational coupling constant G has been solved in this

way.

It is worth mentioning that our code is based on a detailed and

updated constitutive physics appropriate to WD stars. Brie¯y, the

equation of state for the low-density regime is that of Saumon,

Chabrier &VanHorn (1995) for hydrogen and helium plasmas. The

treatment for the completely ionized, high-density regime includes

ionic contributions, Coulomb interactions, partially degenerate

electrons and electron exchange and Thomas±Fermi contributions

at ®nite temperature. Radiative opacities for the high-temperature

regime (T $ 6000K) with metallicity Z � 0 are those of OPAL

(Iglesias & Rogers 1993), whilst for lower temperatures we use the

Alexander & Ferguson (1994) molecular opacities. Conductive

opacities and the various mechanisms of neutrino emission relevant

to WD interiors are taken from the works of Itoh and collaborators

(see Althaus & Benvenuto 1997 for details). With regard to the

energy transport by convection, we adopt the mixing length

prescription usually employed in most WD studies. Finally, we

consider the release of latent heat during crystallization in the same

way as in Benvenuto & Althaus (1997).

As mentioned previously, we computed the evolution of models

with masses ranging from M � 0:4 to 1.0M( with a mass step of

0.1M( and with a hydrogen envelope mass ofMH=M� � 10ÿ5. The

grid in stellar mass will allow us to construct accurate WDLFs for

each pair of values (q, tU) where tU is the age of the Universe. The

initial models were obtained following the arti®cial evolutionary

procedure described in our previous papers cited above. We men-

tion that we consider the same interior composition of carbon and

oxygen formodels of different masses, notwithstanding the changes

that are expected to occur as a result of the differences in the pre-

WD evolution. The carbon±oxygen core of our models is sur-

rounded by an almost pure helium envelope, the mass of which is

taken as MHe=M� � 0:01. In DA WDs [a class of WDs that show

(almost only) hydrogen lines in its spectrum], there is an almost

pure hydrogen envelope on the top of the helium layers. Unfortu-

nately, the mass of this hydrogen envelope is only weakly con-

strained by pre-WD evolutionary calculations (D'Antona &
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Mazzitelli 1991). In recent years, however, strong evidence has

been accumulated favouring the idea that some ZZ Ceti stars

(variable DAWDs) appear to have thick hydrogen layers (Fontaine

et al. 1994). In the present study, we adopt a rather thick hydrogen

envelope (MH=M� � 10ÿ5) that is nevertheless thin enough to

neglect any nuclear burning at its bottom. Simultaneously, it is

thick enough to ensure that the outer convection zone never

reaches its bottom, preventing any mixing with the underlying

helium layer from occurring. Thus, our WD models undergo no

change of the chemical pro®le throughout their entire evolution.

Finally, we assumed the hydrogen/helium transition zone to be

almost discontinuous.

In order to take into account the dependence of theWD evolution

on the age of the Universe tU and, more importantly, on the time of

its birth tB (see Section 3), we have calculated evolutionary

sequences for values of tU � 7.5, 10 and 12.5 Gyr, and for

tB � tMS; tU=2� tMS and tU � tMS, where tMS is the approximate

time spent by theWD progenitor in forming aWD star. For each set

of values (tU, tB,M�) we computed the evolution considering for the

constant q the values 400, 600, 800, 1000, 2000, 5000 and 10 000.

4 THE WHITE DWARF LUMINOSITY

FUNCTION

Over the last two decades, the possibility of using the observed

WDLF in understanding crucial aspects of Galactic disc history has

captured the interest of numerous investigators. Indeed, D'Antona

&Mazzitelli (1978) (see also Schmidt 1959 for an earlier reference)

pointed out that a de®ciency of observed WDs at low luminosities

(established by Liebert et al. 1979) could simply be ascribed to a

®nite age of the Galactic disc. On the other hand, detailed evolu-

tionary calculations of WD evolution (Iben & Tutukov 1984;

D'Antona & Mazzitelli 1989) showed that the Debye cooling is

not suf®ciently rapid to give rise to such a paucity of faintWDs. The

idea that the drop in the WDLF be interpreted in terms of the ®nite

age of the Galactic disc has been extensively and quantitatively

explored by many investigators such as Winget et al. (1987),

GarcõÂa-Berro et al. (1988), Iben & Laughlin (1989), Yuan (1989),

Noh & Scalo (1990), Wood (1992), Oswalt et al. (1996) and

Leggett, Ruiz & Bergeron et al. (1998). By ®tting the observations

with theoretical WDLFs, these authors have studied the observed

WDLF with the major aim of obtaining information about the age

and star formation history of the Galaxy.

The existence of an abrupt fall-off in the WDLF was placed on a

®rm observational basis by Liebert, Dahn & Monet (1988), who

established that the downturn in the WDLF takes place at

log�L=L(�<ÿ4:4 and it is not a result of some selection effect.

Recently, Oswalt et al. (1996) presented an independent determina-

tion of the WDLF based on a sample of WDs in binary systems. In

particular, the procedure adopted by Oswalt et al. for correcting

against sample incompleteness gives rise to an effective search

volume far greater than that considered in previous WD surveys

(see also Wood & Oswalt 1998). In addition, the number of faint

WDs suggested by the lowest luminosity bin used in their study is

®ve to six times larger than that encountered by Liebert et al. (1988).

These features together with updatedWD evolutionary calculations

for DA WD models (Wood 1995) suggest an age for the local

Galactic disc of <9:5 Gyr.

Much more recently, Leggett et al. (1998) have substantially

improved the determination of the observed WDLF for the cool

objects in the sample of Liebert et al. (1988). They employed state-

of-the art model atmospheres to compute accurate bolometric

corrections, and ®nd, on the basis of the WD models of Wood

(1995), an age for the Galactic disc of <8:0Gyr. Notably, the

last bin in the Leggett et al. (1998) WDLF results in a spatial

density of dim WDs about 20 times lower than in the work by

Oswalt et al. (1996). As argued by Leggett et al. (1998), their

WDLF at low luminosities is better determined than that of Oswalt

et al. For this reason, we shall compare our results with the Leggett

et al. WDLF.

To compare with the observed space density of WDs, we

construct integrated WDLFs from our evolutionary sequences. To

this end, we closely follow the treatment presented in Iben &

Laughlin (1989) (see also D'Antona & Mazzitelli 1978). Speci®-

cally, the space density of WDs per unit of log�L=L(� is calculated

from

dn

d log L=L(

� ÿwo

�Ms

Mi

F�M�
dtcool

d log L=L(

dM: �20�

Here, F�M� is the Salpeter initial mass function of WD progenitors

with stellar massM (which predicts that the created star distribution

is proportional toMÿ2:35) and tcool is theWD cooling time at a given

log�L=L(�. Mi and Ms denote respectively the minimum and the

maximum mass of the main-sequence stars that contribute to the

WD space density at log�L=L(�. We takeMs < 8M( (Wood 1992)

and Mi is obtained by considering the earliest period of star

formation in the Galactic disc, that is by solving the equation

tMS�M� � tcool�log�L=L(�;M�� � Tdisc;

where Tdisc is the assumed disc age (see Iben & Laughlin 1989 for

details). Here, the pre-WD evolutionary times tMS�M� are those2 of

Iben & Laughlin (1989). Since for the case of our stellar models

with varying G, tcool depends not only on the WD mass but also on

the time of birth tB of the WD, we use, in order to determine Mi,

linear interpolation between the tcool values corresponding to those

sets of evolutionary sequences whose tB values (for a given tU)

bracket the value tB � tMS � tU ÿ Tdisc, i.e. tB � tMS, tMS � tU=2

(we assume Tdisc � 0:8tU). As far as the initial (M)±®nal (M�) mass

relation is concerned, we use an exponential model:

M� � 0:40 exp�0:125M� (Wood 1992). In deriving equation (20),

the star formation rate wo has been assumed to be constant, an

approximation that does not affect the main conclusions of this

work. Finally, for each of the selected luminosity values, we

calculate dtcool=d log L=L( at the required values of M� and tB
(such that tB � tcool � TU) by using linear interpolation between

the dtcool=d log L=L( values of the sequences that bracketM� and tB.

This is done because the WDLF is observed at the present cosmic

time, whenG � G0. It is worthmentioning that all of our theoretical

curves have been normalized to the observed space density of

0.003 39WDs per cubic parsec (Leggett et al. 1998) (this means that

the integration of the WDLF over the entire range of luminosities

yields the observed space density, thus ®xing wo).

5 NUMERICAL RESULTS

We present now the main results of our calculations. As stated

earlier, we computed the evolution of carbon±oxygen DA WD

models with masses ranging from M � 0:4M( to M � 1:0M( at

intervals of 0.1M( andwith ametallicity of Z � 0.We assumed the
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2 We warn the reader that these times have been computed assuming a

constantG value. In spite of this, we judge that this should introduce a minor

effect on the conclusions of the present work, simply because in the pre-WD

stages, the star has a larger size, and thus the effects induced by the presence

of the last term in equation (19) should be of minor importance.



mass of the hydrogen and helium layers to be MH=M� � 10ÿ5 and

MHe=M� � 0:01, respectively. In order to present a detailed account

of the effects of a non-zero ÇG value upon the evolution of WDs, we

shall refer in the text that follows to those models parametrized by

q � 600, tU � 12:5Gyr and tB � tMS. This choice represents a

rather extreme case in which the effects of ÇG upon evolution are

largely noticeable.

The ®rst striking result is that, because of the presence of the last

term in equation (19), the cooling of WDs is strongly accelerated,

particularly at low luminosities. Owing to the fact that more

massive WDs have smaller radii, this effect turns out to be far

more dramatic in massive WDs.

We begin by examining Fig. 1, in which we show the pro®le of

the internal luminosity of theWD relative to its surface value versus

the fractional mass for a 0.4-M( WD model. In this ®gure, the

curves labelled as 1 and 2 represent earlyWD evolutionary stages in

which (as in the standard case) the main cooling agent is neutrino

emission. In curve 3 neutrino contributions have faded away, and

the change of slope in curve 4 at Mr=M� � 0:35 is due to crystal-

lization. Finally, the convexity in curve 5 at Mr=M� * 0:40 results

from the effect of the variation in the value of G.

In Fig. 2 we show the same pro®le as the previous ®gure but now

in the case of a 0.6-M( WD model. The ®rst stages of evolution

show a rather similar trend in the fractional luminosity, but for

advanced ages the term including ÇG completely takes over the

evolution. Indeed, certain zones of the lowest luminosity model

shown in the ®gure are characterized by a large negative luminosity,

which indicates that such regions are absorbing energy from the

central and outermost parts of the star. This effect is much more

pronounced in the 0.8- and 1.0-M( models (see Figs 3 and 4). In

these cases, at advanced stages of the cooling process, most of the

stellar interior absorbs energy from the outermost layers. This

occurs with negative relative luminosities that peak up to two

orders of magnitude above the radiated luminosity. This effect is

responsible for the strong acceleration of cooling at low luminosities.

In Fig. 5 we show the relation of central temperature (Tc) as a

function of log�L=L(� for the 1-M( WDmodel for different values

of q. It is clearly noticeable that for ÇGÞ 0, models with
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Figure 1. Pro®le of relative luminosity versus fractional mass for a 0.4-M(

WD model calculated assuming q � 600, tU � 12:5Gyr and tB � tMS

(see text for explanation). Curves labelled as 1, 2, 3, 4 and 5 corre-

spond respectively to logL=L( � ÿ0:504 858, ÿ1.203 679, ÿ1.559 933,

ÿ4.205 334 andÿ4.890 475. At high stellar luminosities, neutrino emission

leads to negative fractional luminosities. The effects of a ®nite derivative of

the gravitational constant are clearly noticeable in curve 5 (see text for

additional details).

Figure 2. Same as Fig. 1, but for a 0.6-M( WD model. Notice the change

in the vertical scale. The included evolutionary stages corresponding

to logL=L( � ÿ0:539 606, ÿ0.901 381, ÿ1.269 676, ÿ3.162 055,

ÿ3.562 184, ÿ4.225 259, ÿ4.447 918, ÿ4.740 054 and ÿ4.971 371 are

labelled from 1 to 9. Because of the larger stellar mass and the smaller

radius, the effect of the running gravitational constant is much more

noticeable in this case. This induces large negative luminosities (see text

for additional details).

Figure 3. Same as Fig. 1, but for a 0.8-M( WDmodel. Notice the change in

the vertical scale. Because of the scale, the bunch of curves labelled as 1

corresponds to early stages of evolution. Later evolutionary stages corre-

sponding to logL=L( � ÿ1:620 706,ÿ4.328 015,ÿ4.536 697,ÿ4.747 211,

ÿ4.893 521, ÿ4.955 040 and ÿ4.976 997 are labelled as 2 to 7. Notice the

very large negative luminosities at the last plotted evolutionary stage (see

text for additional details).



ÿ2:5* log L=L( *ÿ4:2 show a larger slope the larger the value of

ÿ ÇG. At lower luminosities, the relationship abruptly becomesmuch

steeper than in the standard case. The differences are also very

noticeable in the value of Tc for a given value of log�L=L(�. This

behaviour is intimately related to the existence of a large peak of

negative luminosities at the stellar interior.

It is particularly noteworthy to analyse the thermal pro®le of

theWDs under these conditions. For this purpose, we show in Fig. 6

the logarithm of the internal temperature versus y [where

y � log �1ÿMr=M�)] for the case of a 1.0-M( WD model. It is

seen that the initial and intermediate states of evolution, in which

the star can be considered as a genuine WD, are rather similar to

previous results with a ®xed G value. However, at the ®nal stages

calculated here, large differences appear. The most noticeable

feature is that, despite the very small conductive opacity of the

degenerate matter, the central parts of the star are no longer

isothermal. Indeed, the internal temperature of the lowest lumin-

ositymodel shown in Fig. 6 changes up to a factor 3 in 90 per cent of

the internal mass of the star.

These results show that the evolution of WDs in the case of a

running G value is markedly different from the standard case. It is

very important to remark that these large differences are particu-

larly noticeable at the range of luminosities at which the WDLF

exhibits the sudden fall-off, which will be critical in the analysis of

theoretically plausible results. Note also that the value of q

considered in the preceding results exceeds the upper bound

implied by existing experiments (see Table 1).

In Figs 7±13 we show the relationship between the logarithm of

the luminosity of theWD and its age for each mass value in the case

of tB � tMS and tU � 12:5Gyr and for q � 400, 600, 800, 1000,

2000 and 5000. This relation is fundamental in computing the

theoretical WDLF, as will be discussed below. The effect of ÇGÞ 0

is clearly noticeable even in the case of the 0.4-M( WD model.
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Figure 5. Logarithm of the central temperature in terms of the logarithm of

the surface luminosity for the 1.0-M( WD model assuming tU � 12:5Gyr

and tB � tMS and the set of q values: q � 400, 600, 800 and 1000. At low

luminosities, curves are ordered from left to right for increasing q values.

For the sake of comparison, we show the relationship corresponding to the

standard case of non-varying gravitational coupling constant (short dashed

line). Note that at low luminosities, the value of the central temperature is

signi®cantly lower compared to the standard case, and its slope is several

times larger.

Figure 6. Logarithm of the internal temperature for a 1.0-M( WD model

in terms of its external mass fraction for q � 600; tU � 12:5Gyr and

tB � tMS. We depict evolutionary stages characterized by (from top to

bottom) log L=L( � ÿ1:416 044, ÿ1.821 964, ÿ2.251 024, ÿ2.660 958,

ÿ3.037 227, ÿ3.441 015, ÿ3.845 380, ÿ4.246 737, ÿ4.481 437,

ÿ4.599 128, ÿ4.648 833 and ÿ4.668 278. The initial curves show a rather

standard behaviour. However, as temperature decreases, it is clearly noticed

that central parts of the star largely depart from the standard case, thus

developing a large thermal gradient in highly degenerate layers, in clear

contrast with the standard case.

Figure 4. Same as Fig. 1, but for a 1.0-M( WDmodel. Notice the change in

the vertical scale. Because of the scale, the bunch of curves labelled as 1

correspond to early stages of evolution. Later evolutionary stages corre-

sponding to logL=L( � ÿ1:416 044,ÿ3.845 380,ÿ4.246 737,ÿ4.481 437,

ÿ4.599 128, ÿ4.648 833 and ÿ4.668 278 are labelled as 2 to 7. Notice the

very large negative luminosities at the last plotted evolutionary stage (see

text for additional details).



While for high values of q the function is rather similar to that of the

standard case, the time spent by theWD in reaching log L=L( � ÿ5

falls to a half for q � 1000 and to a quarter when q � 400. Not

surprisingly, for higher stellar mass values, these differences

become dramatically larger. For example, for the 0.6-M( WD

object with q � 1000, the cooling time falls to a sixth of the

standard one, whilst for q � 400 it falls by more than an order of

magnitude. Finally, in the case of a 1.0-M( WDmodel, if q � 400

the cooling time is almost two orders of magnitude shorter as

compared with the standard case. These differences between the

case ÇGÞ 0 and the standard one are large enough, even in the range

of values of q allowed by other experiments, that the consequences

merit a careful analysis.

To compare our results with the observedWDLF of Leggett et al.

(1998), we construct theoretical WDLFs from our DAWD evolu-

tionary sequences according to equation (20). Note that the derived

space densities are given in terms of intervals of bolometric

magnitude Mbol. As mentioned in the foregoing section, all of the

curves have been normalized to the observed space density of 3.39

stars per 103 pc3. The results corresponding to the standard case of

non-varying G are shown in Fig. 14 for assumed disc ages of 6±

10Gyr. Note that the best ®t to the coolest WDs observed is

obtained for disc ages of approximately 7±8Gyr.
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Figure 7. Logarithm of the luminosity versus age for a 0.4-M( WD model

assuming tU � 12:5Gyr and tB � tMS for the set of q values: q � 400, 600,

800, 1000, 2000 and 5000. Curves are ordered from left to right for

increasing q (decreasing ÇG) values. For the sake of comparison, in a short

dashed line, we also show the standard cooling sequence. Note the accel-

eration of the cooling resulting from the change in the gravitational constant.

Figure 8. Same as Fig. 7, but for a 0.5-M( WD model. Note that the

acceleration is clearly larger as compared to the case of the 0.4-M( WD

model included in Fig. 7.

Figure 9. Same as Fig. 7, but for a 0.6-M( WD model.

Figure 10. Same as Fig. 7, but for a 0.7-M( WD model.



The theoretical WDLFs resulting from the employment of a

varying G are detailed in Figs 15±19 for various assumed disc ages

of Tdisc � 6, 7, 8, 9 and 10Gyr andq � 400, 1000, 5000 and 10 000.

From these ®gures, which summarize themain results of the present

paper, very interesting conclusions may be drawn. First, for very

low values of q, cooling is so fast that the resultant WDLF is almost

independent of the assumed disc age. It is worthwhile to mention

that, in this case, a ®nal extinction of the WDLF is obtained but at

lower luminosities than those predicted by observations. It is

noticeable that, even considering a value of q as large as 10 000,

appreciable differences are found in the theoretical WDLF. For the

range of values of disc ages considered in these ®gures, it is clear

that values of q < 5000 should be discarded, as we ®nd no agree-

ment between observed and computed WDLFs. On the basis of

these results, we conclude that the cooling ofWDs represents a very

powerful tool that allows one to constrain (or even to measure) the

variation of the value of G with a far greater degree of sensitivity

than that provided by existing experiments (see Table 1).

Another feature worthy of comment shown by our calculations in

the context of a varying G is related to the mass of WDs at the faint

regions of the WDLF. In this regard, we show in Figs 20±22 the

minimummass of the main-sequence progenitor contributing to the

WDLF at a given luminosity. It is apparent from these ®gures that,

in the case of a varying gravitational coupling constant correspond-

ing to low q values, progenitors with very low stellar masses will
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Figure 11. Same as Fig. 7, but for a 0.8-M( WD model.

Figure 12. Same as Fig. 7, but for a 0.9-M( WD model.

Figure 13. Same as Fig. 7, but for a 1.0-M( WD model.

Figure 14. Theoretical WDLFs (dotted lines), depicted here per unit of

bolometricmagnitude, corresponding to ourDAWDmodels for the standard

case of non-varying gravitational coupling constant ( ÇG � 0) and for

assumed disc ages of 6±10Gyr (at intervals of 1Gyr). All of the curves,

which are compared to the observational data of Leggett et al. (1998), have

been normalized to the observed WD space density of 0.003 39 stars per

cubic parsec. Note that the best ®t to the dimmest WDs observed corre-

sponds to assumed disc ages of approximately 7±8Gyr.



contribute to theWDLF even at luminosities near the observed turn-

off luminosity, irrespective of the assumed disc age.

6 D ISCUSS ION AND CONCLUSIONS

We have analysed the evolution and cooling processes of white

dwarf (WD) stars in the framework of a varying-G scenario. In

doing so, we have tried to mantain a self-consistent framework: the

particular form in which G varies is obtained from a cosmological

solution of a Brans±Dicke theory of gravity. This stands for the case

in which the star is aware of the cosmological evolution of the scalar

that gives rise to the value of G. The other scenario, that of

gravitational memory, was also investigated. In that case, the

object remembers the value of Newton's coupling constant at the

moment of star formation and conserves it during all its

subsequent evolution. At the moment, there is no clear answer as

to which of these scenarios happens in practice but it is natural to

suppose and expect that some kind of evolution must occur; the

characteristic time-scale of the object (the free-fall time

tff , 1=
������

Gr
p

) is in this case much smaller than the cosmological

time-scale of G variation [texp , 1=H�t�]. In addition, in other long-

lived objects, like cosmic strings, this must be the case to avoid
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Figure 15. Theoretical WDLFs (depicted here per unit of bolometric

magnitude) corresponding to our DAWDmodels with varying gravitational

coupling constant and for the set of values: q � 400, 1000, 5000 and 10 000,

assuming a disc age of Tdisc � 6Gyr. At high luminosity, curves are ordered

from top to bottom for increasing q values. For the sake of comparison, we

also depict the WDLF corresponding to ÇG � 0 (dotted line). The curves,

which are compared to the observational data of Leggett et al. (1998), have

all been normalized to the observed WD space density of 0.003 39 stars per

cubic parsec. Note that the best ®t to the dimmest WDs observed is given by

the curve corresponding to q � 5000.

Figure 16. Same as Fig. 15, but for an assumed disc age of Tdisc � 7Gyr.

Note that the dimmest WDs observed can be ®tted only by curves

corresponding to q > 5000.

Figure 17. Same as Fig. 16, but for an assumed disc age of Tdisc � 8Gyr.

Note that the dimmest WDs observed can be ®tted only by curves

corresponding to q > 10 000.

Figure 18. Same as Fig. 17, but for an assumed disc age of Tdisc � 9Gyr. In

this case, the dimmest WDs observed cannot be ®tted by any of the curves

shown in the ®gure.



contradiction with observational results on the cosmic microwave

background.

The gravitational treatment we followed is an approximation to a

more complex situation: the exact value of G will depend not only

on cosmological time but also on the space coordinates with centre

in the star. This last dependence was overwritten in our case with

that provided by the cosmological model.
3
This was also the case in

the analysis of boson stars4 (Torres 1997a; Torres et al. 1998a,b) and

in the previous study on WDs, where an ad hoc dependence on ÇG ±

which made ÇG=G constant ± was imposed (GarcõÂa-Berro et al.

1995). A fully relativistic treatment will surely introduce speci®c

corrections, but as a result of the Newtonian nature of WDs, we

expect that they will not be important.

The case of a ®xed, bigger value ofG, which is maintained during

the whole lifetime of the star, would yield evolutionary curves and

WD luminosity function (WDLF) diagrams close to, and hardly
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Figure 19. Same as Fig. 18, but for an assumed disc age of Tdisc � 10Gyr.

3 This is equivalent to thinking that the star is such a small perturbation of the

background Friedmann universe as to disregard its in¯uence in the cosmo-

logical solutions.

Figure 20.Minimummass of the main-sequence progenitor contributing to

the WDLF as a function of luminosity for a disc age of Tdisc � 7Gyr. Solid

lines correspond to the case of varying gravitational coupling constant for

q � 10 000, 5000, 1000 and 400 and dotted line to the case ÇG � 0. Note that

in the case of varying gravitational coupling constant with low q values,

progenitors with very low stellar masses will contribute to theWDLF even at

luminosities near the observed turn-off luminosity.

Figure 21. Same as Fig. 20, but for an assumed disc age of Tdisc � 8Gyr.

Figure 22. Same as Fig. 21, but for an assumed disc age of Tdisc � 9 Gyr.

Now, even for the case of a very slow change ofG, progenitors with very low

stellar masses will contribute to the WDLF even at luminosities near the

observed turn-off luminosity.

4 There, the authors studied static stars at different times, with no evolution

of the same con®guration, contrary to what was done here.



distinguishable from, the standard case. This is not surprising

because, if the effective value of ÇG is zero, then the last term of

equation (19) yields no contribution at all.

For a running value of G, we have found some striking results.

The ®rst of them is that the cooling of WDs is strongly accelerated,

particularly for massiveWDs at low luminosities, where theWDLF

exhibits a sudden fall-off. More speci®cally, we found that, if the

WD is able to feel the cosmological variation ofG, even in the range

of q implied by other experiments, massive WDs cool down in a

time up to two orders of magnitude faster than in the standard case.

If q has a low value, it causes massive WDs to develop large

negative luminosities, far larger than the emitted ones. This indi-

cates that the star absorbs energy from the outer layers in order to

expand against gravity. Notably, in these cases, the interior strongly

departs from an isothermal description in spite of the extremely low

conductive opacities of the strongly degenerate plasma present in

the deep interior. To our knowledge, there is no other case of

strong departure from isothermality in degenerate layers in quasi-

hydrostatic stellar evolution. For the case of large q values, the

differences are not so large, but are still clearly noticeable when

compared to the standard case.

As a result of these differences, the theoreticalWDLF turns out to

be very sensitive to the value of the parameters q and tB. Thus,

constructing theoretical WDLFs allows us to perform a detailed

comparison with the observational WDLF, and then to deduce the

range of parameters allowed by the evolution of WDs. As we have

mentioned before, it seems to be the most sensitive test ever

performed for theories of gravitation.

From the standard curves of the WDLF we can see that, if we

adopt a ÇG � 0 model, then the fall-off of the diagram entails an age

for the Galactic disc between 7 and 8 Gyr (see also Leggett et al.

1998). Recall, on the other hand, that the currently favoured low

values of the Hubble constant H0 , 65±80 km sÿ1 Mpcÿ1 yield

estimates for the age of the Universe of order 7±9Gyr, and so it

is evident that the Galactic disc should be younger.

If we adopt now a ÇGÞ 0 model, we see that different q values

have different behaviours and that this also depends on the disc age.

This age may be different from the Galactic age in the case of a later

infall of massive material from a dark matter halo. To what extent

the determination of the age of the Galactic disc (in situations where

it would not depend on WD evolution) is independent of the ÇG

model is still a matter of study. Thus, to extract any conclusion we

must assume a ®xed age for the disc. We show several examples of

WDLFs from 6 to 10Gyr and different values of q. In the ®rst case,

the lowest age analysed, ÇGÞ 0models with extraordinarily low rate

of variation such as those provided by a Brans - Dicke theory with

q � 5000 seem to be a better ®t to the data than the standard ÇG � 0

case. For older discs (,10Gyr), neither of the models (nor even the

standard) ®t the last troublesome point. Around the expected age,

between 7 and 8Gyr, a similar scheme to that of the lowest age

happens, but now the variation in G is even more slow, and

accordingly the Brans±Dicke parameter is even bigger. Consider-

ing the current observational status, the WDLF represents the

strongest test of gravitational theories, providing a current j ÇG=Gj

of order 10ÿ14, which is between one and three orders of magnitude

more restrictive than previous bounds. It is amazing that the

difference between the previous values of ÇG and ÇG; 0 is pretty

well noticed in the diagrams, as well as its predictions and abilities

in comparing with observations. In order to explore from where

these differences in the WDLF diagrams arise, it is enough to study

the minimum mass of the progenitor within each model. For

instance, see the curves for Tdisc � 7Gyr. In the ÇG � 0 case

Mi�M(�q 4, whilst for q � 5000, Mi�M(� > 2. This, again, is a

striking result from the gravitational point of view: any other test

(weak or strong) is unable to see any deviation between general

relativity and Brans±Dicke theory with such a huge parameter. To

translate this in a practical test would entail and require one to

develop an in-depth knowledge of the distribution of WDs at low

luminosities in our neighbourhood.

It is worth noting, however, that the lowest luminosity point in the

observed distribution is currently the least precisely determined: the

number density in this region is extremely low and actually

represents a handful of stars. It is still quite possible that this

point (as well as other subsequent ones) may suffer substantive

variations in its position in the near future. In fact, in a recent letter

to Nature (Oswalt et al. 1996), it was located well above

[log �dn=dMbol�,ÿ3] the position we adopted in this work

(Leggett et al. 1998). Although the observational analysis of

Oswalt et al. (1996) has recently been criticized (Leggett et al.

1998), it is worth mentioning as an example of how a different

positionmay affect our results and conclusions.We have studied the

form of the WDLF following Ostwalt et al.'s observational points;

this led us to conclude that, if the real WDLF was that of Ostwalt

et al., any Brans±Dicke theory with values of q bigger than 400will

be able to ®t the observational data irrespective of the age of the

Galactic disc. So different conclusions are the spin-off of a change

in the position of the curves and thus it is important to clarify it.

In both situations, we have presented the case to transform the

study of WDs in a powerful test of gravity. It now becomes obvious

to study which changes are produced by different coupling func-

tions in the gravitational sector of the action. This is important

because theories that may deviate verymuch from general relativity

at early times of the Universe may exist. For instance, power-law

couplings are not constrained by weak-®eld tests and produce a

cosmological logarithmic decrease in G, which is slower than the

one explored here. How this affects the structure and how it differs

from the Brans±Dicke model will be reported elsewhere.

It is worth mentioning that we have found that the simplest

coupling possible, and values for it that make the theory almost

indistinguishable from general relativity in any Solar system and

strong tests, is enough to make evident very different stellar

phenomena. This may be important in de®ning the low-energy

form of the gravitational action:We have proven that astrophysics is

sensitive to minimum (but conceptually important) differences in

the underlying theory of gravity, and that this is compelling in

deriving de®nite tests of the Universe.

A word of caution seems to be appropriate at this point. In this

work we have not included a detailed treatment of crystallization

processes in our evolving carbon±oxygen models, i.e. we have

implicitly assumed that the mixture undergoes crystallization for

any carbon±oxygen abundances. Nevertheless, in some works (see

e.g. Stevenson 1980) it has been proposed that a crystallized

carbon±oxygen mixture may prefer some de®ned relative abun-

dances. If this occurs in nature and if the pre-WD evolution leads to

an internal composition different from the preferred mixture, the

crystallization process will be accompanied by a migration of part

of the ions of the element present in excess. This would affect the

gravitational energy release at such an evolutionary stage, and then

it would lead to a sizeable modi®cation of the WDLF, as found, for

example, in Hernanz et al. (1994).We expect the inclusion of such a

process to have some effect on the main conclusions of the present

paper, although a quantitative exploration of the consequences can

only be estimated by performing a calculation like the one we

present here. Such a study is beyond the scope of the present paper.
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Finally, we would like to comment why at present it is not

possible to perform a similar analysis employing evolving neutron

stars in place of WDs. As is well known, neutron stars have a much

smaller radius and thus a much larger gravitational binding energy

compared to WDs. Then, these objects seem to be even more

promising for performing a study like the one we have presented.

However, this is not the case, mainly for two reasons. First of all,

from the theoretical point of view, it is well known that there is a

large uncertainty in the actual equation of state of the matter of

which neutron stars aremade up. Consequently, at present we do not

have models reliable enough for our purposes. Secondly, from the

observational point of view, there is no equivalent `neutron star

luminosity function'. In fact, neutron stars are used to show the

pulsar phenomenology. Thus, they are surrounded by an extended

magnetosphere that masks the neutron star surface. This makes it

hard to extract observational information on the evolutionary status

of such objects.
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