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2Facultad de Ciencias Astronómicas y Geof́ısicas, Universidad Nacional de La Plata
Av. Centenario S/N, Paseo del Bosque, La Plata, Argentina

3CONICET, Godoy Cruz 2290, 1425 Ciudad Autónoma de Buenos Aires, Argentina

E-mail: mocampo@fcaglp.unlp.edu.ar

Abstract. Among the open problems in fundamental physics, few are as conceptually signif-
icant as the measurement problem in Quantum Mechanics. One of the proposed solutions to
this problem is the Continuous Spontaneous Localization (CSL) model, which introduces a
non-linear and stochastic modification of the Schrödinger equation. This model incorporates
two parameters that can be subjected to experimental constraints. One of the most notable
consequences of this theory is the spontaneous heating of massive objects; this anomalous
heating is dependent on the CSL parameters. In this work, we will revisit some astrophysical
bounds previously found, and introduce new methods for testing the spontaneous heating in
a variety of compact objects. Finally, we will compare our different bounds and discuss the
benefits and shortcomings of each one.
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1 Introduction

The measurement problem in Quantum Mechanics (QM) [1–8] arises from the coexistence of
two different rules for the time evolution of a system: the deterministic dynamics dictated
by Schrödinger’s equation, and the so-called collapse of the wave function. This collapse
represents an abrupt and random change in the system’s physical state during measurement,
contrasting with the continuous and deterministic evolution described by Schrödinger’s equa-
tion. Specifically, the act of measurement appears to break or “collapse” the superposition of
states (as allowed by Schrödinger’s equation) into a single definite state;1 the latter is what
is always observed in actual measurements. However, the theory does not unambiguously
and precisely define what constitutes a measurement. In other words, QM does not specify
exactly when to apply the collapse postulate instead of Schrödinger evolution.

The measurement problem has been known since the dawn of QM and is often treated
as of purely philosophical nature, essentially because of the enormous success the theory has
enjoyed in applications, ranging from particle physics to condensed matter. Nevertheless, as
J.S. Bell has argued [3, 4], such a pragmatic attitude is sometimes inadequate; for instance,
when applying QM to the early universe [9–16]. Maudlin has characterized the quantum
measurement problem in a formal manner [17]. There, it is shown that the following three
premises cannot be held simultaneously in a self-consistent manner:

1. The physical description provided by the state vector is complete.

2. Quantum states always evolve according to the Schrödinger equation.

3. Results of experiments, i.e. measurements, always have definite results.

1The change in the state of the physical system caused by the act of measurement also raises profound
questions about the role of the observer and the nature of reality. What physical systems qualify to play the
observer’s role? Can QM also be used to characterize an observer or measurement device?
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Objective collapse theories [18–24], also known simply as collapse models, are a proposal
to address the measurement problem by neglecting premise 2. Collapse models postulate that
each physical system interacts with an universal noise field, triggering the collapse of the
wave function in space. In this scenario, the evolution of the system is given by a modified
Schrödinger equation that incorporates the effect of the noise field. The effect of the noise is
almost negligible for microscopic systems but becomes dominant for macro systems; this is
known as the amplification mechanism. In this manner, the aim of these models is to extend
QM in order to obtain a theory that reproduces its successful predictions in the microscopic
realm, and can also be applied to describe macroscopic phenomena. In this work, we will
analyze the Continuous Spontaneous Localization (CSL) model [20, 25–27]. The CSL model
is characterized by two parameters: a collapse rate, λ (typically very small ∼ 10−16 s−1,
ensuring rare collapses for microscopic systems), and a localization length, rC (typically
small ∼ 10−7 m, ensuring rapid localization for macroscopic systems). The CSL model has
also been subject to experimental testing as its predictions differ from those of standard QM
for certain systems [28, 29]. These empirical constraints have been obtained from various
experiments, including: spontaneous X-ray emission [30, 31], matter–wave interferometry
[32] and gravitational wave detectors [33, 34].

Since Newton proposed that the laws of motion that governed the stars and objects
terrestrials were the same, the stars have been used multiple times to test new theories in
physics. The last decades have not been an exception from this tradition. The need to incor-
porate a cosmological constant in our description of the universe was initially provided by the
study of the luminosities of SNeIa [35, 36], and the problem of solar neutrinos offered a clear
example of how stars can be used for detecting the need for new physics [37–40]. Moreover,
astrophysical arguments are routinely used to put constraints on either new hypothetical par-
ticles and fields or on hypothetical properties of well-established particles [41–43]. Likewise,
the deviations from standard physics predicted by the CSL model can also be constrained
by astrophysical arguments.

A novel physical prediction of collapse models is spontaneous heating due to the in-
teraction of the noise field with the system (i.e. there is a measurable non-conservation of
energy). This mechanism provides a tool for constraining the parameters of the CSL model
[44–51]. In Refs. [52, 53], the CSL model was applied to a Fermi liquid, obtaining an ex-
pression for the heating power induced by the collapse mechanism. Using this expression the
authors made a rough estimation for the value of λ/rC

2 above which observable consequences
in the structure and evolution of neutron stars and planets should appear. This was done by
assuming that the thermal radiation coming from the surface of those astrophysical objects
was balanced by the anomalous heating predicted in the CSL theory. In this work we will
extend this analysis to a variety of astrophysical objects. The paper is organized as follows:
In Section 2, we will outline the basics of the Continuous Spontaneous Localization (CSL)
model and its connection to the resulting heating effect. In Section 3, we will derive bounds
from the physics of white dwarfs, using both white dwarf populations and individual stars.
Then, in Section 4, we will revisit the bounds derived from the internal heat flow of planets in
the Solar System, and show that when external heating from the Sun is taken into account,
these bounds are as restrictive as most laboratory experiments. In Section 5, we will revise
the bounds from neutron stars by focusing on an interesting neutron star candidate. Finally,
in Section 6, we present our results and discuss the benefits, shortcomings, and prospects of
the different astrophysical bounds on the CSL parameters.
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2 CSL heating

In this section, we will summarize the fundamentals of the Continuous Spontaneous Local-
ization (CSL) model and its relation to the induced heating effect. Therefore, no original
work is presented in this section. A complete review of the theory (including its derivation)
can be found in [54–56].

The CSL model is an extension of Quantum Mechanics, in which a non-linear stochastic
term is added to the Schrödinger equation. The non-linearity serves to break quantum super-
positions, providing a self-induced collapse of the wave function in position space. Stochas-
ticity, on the other hand, prevents faster-than-light signaling. The model also recovers the
probability rule given in Born’s postulate.

The dynamics of the (mass proportional) CSL model is given by the following stochastic
differential equation

d|ψ(t)⟩ =

{
− i

ℏ
Ĥdt+

√
γ

m0

∫
d3x[M̂(x)− ⟨M̂(x)⟩]dW (x, t)

− γ

2m0

∫
d3x[M̂(x)− ⟨M̂(x)⟩]2dt

}
|ψ(t)⟩, (2.1)

where γ ≡ λr3C8π
3/2, Ĥ is the standard Hamiltonian of the system, ⟨M̂⟩ ≡ ⟨ψ(t)|M̂ |ψ(t)⟩, m0

is a reference mass, traditionally chosen as the mass of a nucleon, and W (x, t) is an ensemble
of independent Wiener processes, one for each point in space. The operator M̂(x) represents
the (smeared) mass density operator

M̂(x) =
1

(
√
2πrC)3

∑
i

mi

∑
s

∫
d3z e

− (z−x)2

2r2
C Ψ̂†

i (z, s)Ψ̂i(z, s); (2.2)

the operators Ψ̂†
i (z, s) and Ψ̂i(z, s) denote respectively the creation and annihilation operators

of a particle with spin s of type i in the point z.
The collapse model, as characterized by Eq. (2.1), contains two parameters: The col-

lapse rate λ, which sets the strength of the collapse, and a noise correlation length rC , which
measures the spatial resolution of the collapse.

The most common theoretical proposal for the numeric value of the parameters is given
by Ghirardi, Rimini and Weber [18, 19], these are λ = 10−16s−1 and rC = 10−7m. On the
other hand, experiments from gravitational wave detectors and spontaneous X-ray emissions
have strongly bounded the parameters of the model, leaving the region of parameter space
around rC ∼ 10−7 − 10−4m and λ ∼ 10−18 − 10−12 s−1 viable [29, 57].

As mentioned in the Introduction, a particular prediction of the CSL model (as well
as any collapse model) is spontaneous heating due to the interaction of the system with the
noise field; this effect can also be used to constrain the model parameters. Intuitively, one
can understand this effect as follows. For a system of particles, the noise field continuously
acts on them, causing their wave functions to localize in space spontaneously over time.
Given Heisenberg’s uncertainty principle, a narrow localization in space implies an increase
in kinetic energy, leading to a measurable increase in the system’s temperature. In particular,
for a body of total massM , modeled as a group of particles, the mass-proportional CSL model
with white noise predicts an energy gain given by [58].

dE

dt
=

3ℏ2λM
4m2

0r
2
C

, (2.3)
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where λ and rC are the usual parameters of the CSL model, and m0 is the nucleon mass.
The heating effect has been analyzed for various physical systems, including mono-

and multi-atomic crystals [51], phononic modes in matter [50], and ultra-cold atoms [59], all
resulting in the same prediction as Eq. (2.3). Furthermore, in Refs. [52, 53], the CSL-induced
heating was examined for Fermi liquids; the energy gained in such a system also coincides
with Eq. (2.3). The calculations derived in [52, 53] were applied to the case of neutron stars.

It is important to mention that, although Eq. (2.3) was originally derived considering
a Fermi liquid, the calculation is valid for any system of fermionic particles. Moreover, the
derivation does not employ any particular statistical distribution. This implies that Eq. (2.3)
can be applied to a wide variety of astrophysical objects, such as white dwarfs, planets, or
other compact objects, rather than being restricted solely to neutron stars. This approach
will be adopted in the subsequent sections of our paper.

3 Bounds from white dwarfs astrophysics

White dwarfs are the final stage in the evolution for the majority of stars in the Universe
[60, 61]. They are compact dense objects with masses similar to the Sun and radii similar to
the Earth. Their structure is sustained by the pressure of the degenerate electrons and, since
they cannot obtain energy from nuclear reactions, their evolution can be described primarily
as a cooling process [62]. Their relatively well known physics and the possibility to actually
measure their cooling speeds makes them ideal for testing a huge variety of physical models
[63–67]. There are two main, mostly independent, ways to measure the cooling rate of WDs.
One is based on the secular drift of the pulsation period of individual white dwarf variables,
and the other is based on the number counts of white dwarfs at different luminosities in a
given stellar population (the so-called white dwarf luminosity function). In this Section we
will make use of these two tools in addition to the stellar parameters measured for individual
WDs to obtain three different bounds for the CSL parameters.

3.1 Bounds from the thermal balance of individual white dwarfs

Following [53], we can estimate the value of λ/rC
2 at which the anomalous CSL heating would

start to produce observable consequences in WDs by balancing the energy radiated away from
the star with that produced by the anomalous CSL heating effect (LCSL). Assuming that
neutrino emission is negligible, and that white dwarf losses its energy by thermal radiation
emission from the photosphere (i.e. the stellar luminosity L⋆), we have

L⋆ = 4πσR⋆
2T 4

eff = LCSL =
3ℏ2

4m0
2

λ

rC2
M⋆, (3.1)

where R⋆ is the photospheric radius, Teff the effective temperature, and M⋆ the mass of the
star, ℏ the reduced Planck’s constant, σ the Stefan-Boltzmann’s constant, and m0 is the
atomic mass unit.

From Eq. 3.1, we find that values of λ/rC
2 such that

λ

rC2
>

λ

rC2

∣∣∣∣
eq

=
4L ⋆ m2

0

3ℏ2M⋆
(3.2)

would lead to a net heating of the star, as the energy radiated away from the photosphere
would not be enough to counteract the anomalous CSL heating.
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Now, we need a sample of stars to test this expression. Since we are interested in
obtaining the lowest bound possible, we will focus on stars that are as massive and faint as
possible. A good sample can be found in [68], where we can use the masses and luminosities
in Table 4. By applying Eq. (3.2) to those stars, we can obtain the equilibrium values for
the CSL parameters for the whole sample. The lowest numerical bounds are obtained for
J1251+4403 and J1220+0914, with 1σ and 3σ precision values2 of:

(λ/r2C)J1251+4403,1σ = 4.700× 105s−1m−2,

(λ/r2C)J1251+4403,3σ = 4.766× 105s−1m−2.

(λ/r2C)J1220+0914,1σ = 5.931× 105s−1m−2

(λ/r2C)J1220+0914,3σ = 6.019× 105s−1m−2

This constraint is more than two orders of magnitude more restrictive than the one
obtained in [53], which was λ/r2C = 9.43×107s−1m−2 corresponding to the neutron star PSR
J1840-1419.

The bounds of λ/rC
2 derived from the thermal balance of WDs are, however, less

restrictive than the values derived from icy giants in the Solar System [53]. It should be
noted, however, that the use of Eq. 3.1 for the planets for the Solar System is questionable
at best since, for all of them, the radiation coming from the Sun cannot be neglected in the
energy balance of the planet. In Section 4, the bounds that can derived from the anomalous
CSL heating of the planets in the Solar System will be explored.

However, bounds relying on the parameters of individual studies of stars should be
taken with caution, mainly because they depend on the accuracy of the stellar parameters
determined for each star. Interestingly, as mentioned in the introduction, there are two main
independent methods to measure the cooling of white dwarfs. These observable properties
can then be used to derive accurate bounds on the value of λ/r2C .

3.2 Bounds from the secular period drift of variable white dwarfs

The first approach we will discuss comes from the period drift of variable white dwarfs. In
what follows, we will provide a simple estimation of the effectiveness of this approach in the
context of anomalous CSL heating.

It is possible to show from relatively simple arguments [69] that temporal changes in
the periods of normal modes in white dwarfs (Π, Π̇) are related to the WD cooling speed of
the core (Ṫc), and the speed at which the envelope contracts (Ṙ⋆), as

Π̇

Π
= −a Ṫc

Tc
+ b

Ṙ⋆

R⋆
, (3.3)

where a and b are two positive constants that depend on the specific mode and evolutionary
state of the white dwarf. For cold low-luminosity white dwarfs, the contraction term is almost
negligible [70] b ≃ 0, and the period drift of normal modes is dominated by cooling. For stars
that are sufficiently cold (old) that neutrino emission is negligible but still hot (young) enough
that crystallization has not yet occurred, the surface luminosity of the star can be equated
to the loss of thermal energy from the ions, given by L⋆ ≃ −⟨cv⟩M⋆Ṫc [61].

This is the regime in which the most numerous white dwarf variables are found —the
so-called DAVs or ZZ Ceti stars, see [71]. Any additional cooling or heating mechanism will

21σ- and 3σ-values were derived by allowing 1σ and 3σ changes in the reported stellar parameters in the
least favorable direction.
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increase of decrease the period drift. Perturbatively, we can derive that an anomalous heating
(LCSL) will lead to a change in the rate of period drift of DAV white dwarfs (δΠ̇) given by
(see [70]), LCSL/L⋆ ≃ δΠ̇/Π̇.

Currently, there are only three DAV stars for which the period drift has been measured
(G117-B15A, R548, and L19-2 [71]). In particular, the period Π ≃ 215 s of G117-B15A has
been found to be extremely stable. More than 40 years of measurements of this period has
allowed an unprecedented precision (Π = 215.19738823 ± 0.00000063 s), allowing the most
precise determination of the period drift in any DAV (Π̇ = (5.47± 0.82)× 10−15 s s−1), see
[72]. This corresponds to a precision of δΠ̇/Π̇ ≃ 0.15. This implies that only an anomalous
heating of about LCSL/L⋆ ≃ δΠ̇/Π̇ ≃ 0.15 would be detectable. For the luminosity and mass
of G117-B15A (logL⋆/L⊙ ≃ −2.5 and M⋆ ≃ 0.59M⊙ [64]) this implies that, currently, the
best possible constraints to the CSL anomalous heating coming from variable white dwarfs
would be close to λ/rC

2 ≲ 5.2×107 m−2s−1. This value is already smaller than the estimation
coming from the thermal balance in the neutron star PSR J1840-1419 found in Ref. [53].
As a matter of fact, values of λ/rC

2 ≳ 5.2× 107 m−2s−1 would contradict the actual cooling
speed measured in G117-B15A [72]. While this is the best bound that can be obtained from
the asteroseismology of DAV WDs, similar bounds could be obtained from the other two
DAV WDs for which the period drift was actually measured (R548, and L19-2 [71]).

3.3 Bounds from the White Dwarf Luminosity Function (WDLF)

The next approach we will take involves exploring the WDLF, defined as the number of
white dwarfs per cubic parsec and unit bolometric magnitude as function of the bolometric
magnitude [61, 65, 73]. If we limit ourselves to the intermediate luminosity regime, where
both crystallization and neutrino emission can be neglected, and we assume a typical mass
of MWD for the typical WDs, the WDLF can be shown to be [67]:

dN

dMbol
= B3 2.2× 10−4 10−4Mbol/35L⊙

78.7L⊙10−2Mbol/5 + LX

(
MWD

M⊙

)5/7(∑
j

Xj

Aj

)
pc−3mag−1, (3.4)

where LX represents the additional contribution, which can be either extra cooling by emis-
sion of particles [67] or, in our work, the CSL heating mechanism. B3 is the constant birthrate
normalised to 10−3pc−3Gyr−1, Xj is the mass fraction of the element j and Aj the mass (nu-
cleon) number of the element j. In the present work we will consider an equal mixture of
carbon and oxygen and a typical WD mass of MWD = 0.6M⊙.

Introducing the CSL heating mechanism from Eq. 2.3 in Eq. 3.4 we obtain the following
expression:

fth ≡
(

dN

dMbol

)
λ/r2C

=
B3 2.2× 10−410−4Mbol/35L⊙

78.7L⊙10−2Mbol/5 − 3ℏλMWD

4m2
0r

2
C

(
MWD

M⊙

)5/7(∑
j

Xj

Aj

)
pc−3mag−1,

(3.5)
where the minus sign in the CSL term in the denominator comes from the fact that this
mechanism is heating the star. With the previous assumptions, if we consider λ/r2C = 0
we recover Mestel’s cooling law [62] (scaled with B3). The extra CSL term introduces a
divergence in the WDLF, predicting a limit magnitude at which the WDs should accumulate
and could not cool anymore. This divergence occurs at higher luminosities for higher values of
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Figure 1. Different models compared with the data of [66]. At higher values for λ/r2C the thoretical
WDLF diverges at lower magnitudes. All functions were normalized to have the same area under
their curves on the interval displayed.

λ/r2C . Note that for sufficiently high values for the CSL parameters, there are actually fainter
stars in the observable WDLF and, since the model predicts a brighter limit magnitude, these
values are already discarded.

For the following test, we will estimate the values for λ/r2C for which the separation
between their predicted WLDF and the observable data is sufficiently large that we can
discard them using a χ2 statistic. We will concentrate in the intermediate luminosity range
10.5 < Mbol < 15 where both the energy release by crystallization and neutrino cooling can
be neglected, allowing the use of Eq. 3.5. To define the value of B3, we will ensure that the
theoretical WDLF yields the same number of stars per pc3 as the observational WDLF, by
imposing

∫ 15

10.5
fthdMbol =

15∑
10.5

fobs∆Mbol, (3.6)

where fobs is the observational data given in [66] and shown in Figure 1 and ∆Mbol = 0.5 is
the width of every box in the figure. This normalization means that all WDLF will count
the same number of stars in the given interval and this will match the observed data. This
is a constrain that will remove a degree of freedom in the following analysis.

Assuming that the WDLFs and the observed data are realizations of distributions with
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Figure 2. The reduced χ2 statistical for the CSL parameters and their intersection with the limits
of different confidence levels. All CSL parameters higher than these intersections are discarded with
the corresponding confidence level.

the same mean value µi at each Mbol,i and Gaussian errors, as in [66], then the quantity χ2
red

χ2
red(λ/r

2
C) =

1

8

15∑
Mbol,i=10.5

fobs(Mbol,i)− fth(Mbol,i)

σ(Mbol,i)2
, (3.7)

will follow a χ2 distribution and we can use it to discard the values of the CSL parameters
that yield a χ2

red higher than the limit given by certain confidence level. In this expression
the factor 1/8 comes from the fact that we need to divide the χ2 to the number of deegres
of freedom of the sample to obtain the reduced χ2

red. We plot the resultant χ2
red in Figure 2.

Depending on the confidence level pursued, we can obtain different bounds for the CSL
parameters, as shown in Figure 2. These bounds are, nevertheless, all of the same order of
magnitude:

λ

r2C

∣∣∣∣
70% C.L.

≈ 1.576× 106s−1m−2,

λ

r2C

∣∣∣∣
95% C.L.

≈ 1.912× 106s−1m−2,

λ

r2C

∣∣∣∣
99.9% C.L.

≈ 2.340× 106s−1m−2.
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Table 1.
Planet Intrinsic heat flux[W/m2] (λ/r2C)1σ[s

−1m−2] (λ/r2C)3σ[s
−1m−2]

Jupiter 7.485± 0.160 8.676× 104 9.040× 104

Saturn 2.010± 0.140 5.447× 104 6.155× 104

Uranus 0.042+0.047
−0.042 2.781× 103 5.717× 103

Neptune 0.433± 0.046 1.195× 104 1.425× 104

In Section 6 we will discuss how these bounds could be further improved and compare
them with the obtained in Section 4.

4 Bounds from the Solar System

As we commented in Section 3, the radiation coming from the Sun cannot be neglected in the
energy balance of the planets in the Solar System. This is particularly true for planets such as
Earth or Uranus, for which the radiation absorbed from the Sun is very close to that emitted
from the surface. Moreover, each planet has an albedo that depends on the characteristics
of its surface and atmosphere, and therefore only absorbs a fraction of radiation. Moreover,
other effects such as the presence of an atmosphere (and therefore greenhouse effects) can
increase the surface temperature beyond the value of the effective temperature. By using
an equation like Eq. 3.1 together with the black-body temperatures obtained from [74],
the estimation performed by [53] effectively compares the anomalous CSL-heating with the
fraction of the Solar luminosity that is absorbed (i.e. not reflected) by each planet and needs
to be thermally re-emitted in equilibrium3. Note that this is not correct, the hypothetical CSL
heating should either be compared to the total observed luminosity of the planet or directly
compared to the intrinsic heat released by the planet once the known solar contribution is
removed. Moreover, using Eq. 3.1 squanders a great opportunity to put stricter bounds, as
in many cases most of the energy radiated away from a planet comes directly from the Sun
and can be easily removed from the energy budget. It is the intrinsic power of the planet,
i.e. the difference between the total incoming energy from the Sun and the total emitted
radiation, what should be used to set constraints on the anomalous CSL-heating —see Ref.
[76] for a similar analysis in the case of the hypothetical heating introduced by a cosmological
variation of the fine structure constant.

Considering again that CSL heating PCSL equals the power heat emitted from their
interior Pint, we can obtain the corresponding bounds to the parameters:

λ

r2C
=

4m2
0Pint

3ℏ2Mp
, (4.1)

with Mp being the mass of each planet.

4.1 Giant planets

First, we will consider the case of the gas and icy giants, for which the energy balance
was determined by Voyager and Cassini [77–80]. Their main source of internal energy is
the gravothermal contraction of the planets [81]. By comparing the observationally derived
internal heat flow to the potential anomalous CSL heating power, we can derive the values

3This is because the black-body temperatures presented in [74] only account for the thermal re-emission
of the energy absorbed from the Sun, neglecting intrinsic planetary heat sources [75].
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of λ/r2C beyond which the CSL heating power would be sufficient to produce the entirety
of the observed heat flux. This assumption, i.e. that the observed heat flow represents the
mean steady-state value of the internal heat flow, sets a strict constraint on the values of
λ/r2C . Applying Eq. 4.1 to the internal heat flow plus its 1σ− and 3σ−errors, we obtain
the corresponding bounds to the parameters from each planet (Table 1). As expected the
derived values are smaller than those derived by [53], the only exception being Neptune for
which the power absorbed from the Sun is smaller than the actual measured internal heat
flux (see table 2 of [81]). Consequently, the use of the black-body temperature of [74] in Ref.
[53] underestimates the heat emitted from the planet leading to an overly optimistic bound.

4.2 Earth and Moon

Now we turn our attention to our planet and the Moon. Naturally, the heat flow on Earth has
been measured more precisely than on the giant planets. One of the latest determinations
was performed in Ref. [82]. The authors provide a revised global estimate of the Earth
surface heat flow which is based in a huge data set of 38347 measurements distributed over
the whole surface of the Earth (both in land and sea). The global estimated value of the
surface heat flow in Ref. [82] is 47± 2 TW. From Eq. 4.1 this leads to the following bounds
for the CSL parameters:

(λ/r2C)⊕,1σ = 2.751× 103s−1m−2,

(λ/r2C)⊕,3σ = 2.975× 103s−1m−2.

This bound has the advantage of relying on experiments conducted on our own planet and
covering the entire surface of the Earth. The techniques involved are also more precise and
sophisticated than those possible for other celestial bodies.

On the other hand, the Moon had two in situ experiments, Apollo 15 and Apollo
17, where the heat flow was estimated between 12 and 18 mW/m2 [83]. However, newer
studies suggest that these values are overestimated by the influence of other mechanisms
[84] and estimate a significantly lower value of 4.9± 0.2mW/m2, using Chang’E-2 microwave
radiometer data and Diviner observations. With these new estimations, we obtain the lowest
bound for the CSL parameters in this work:

(λ/r2C)$,1σ = 8.840× 102s−1m−2,

(λ/r2C)$,3σ = 9.533× 102s−1m−2.

In Section 6 we will compare these bounds with the previously found in Section 3 and
by other experiments. Also, we will discuss how they could be improved.

5 Estimation using PSR J2144–3933

We can revisit the astrophysical bound given by neutron stars to the CSL parameters by
following the same approach done in Section 3.1, that is, finding the coldest neutron star
in order to take advantage of the strong dependence of L⋆ with the effective temperature.
Again considering that the object is evolving through a simple cooling process and the star
losses its energy by Stefan-Boltzmann’s law we obtain, as in [53]:

λ

r2C
=

16πσm2
0R⋆T

4
eff

3ℏ2M⋆
. (5.1)
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Table 2. Bounds with 3σ precision obtained for the CSL parameters in the different astrophysical
approaches.

Method used λ/r2C [s
−1m−2]

White dwarf luminosity function 2.340× 106

Individual white dwarf data 4.766× 105

Icy giants heat flux 5.717× 103

Earth heat flux 2.975× 103

Moon heat flux 9.533× 102

In [85] the authors estimate an upper bound for the surface temperature of PSR
J2144–3933, obtaining that it can not be higher than Teff < 42000K. This would be, then,
the coldest neutron star observed to this day. Assuming the least favorable values for the
mass M⋆ = 1M⊙ (lowest) and a coordinate radius of R⋆ = 16km (highest possible) [86, 87],
we obtain a value for the CSL parameters of λ/r2C = 9.51× 104s−1m−2. This value is three
orders of magnitude lower than the one obtained in [53] for PSR J 1840-1419.

Similarly to the case discussed in Section 3.1, higher values for the CSL parameters
would result in a net heating of the star. However, since this bound is again obtained from
data of an individual object, we face the same limitation of dependence on the accuracy in
the determination of the stellar parameters. This situation is exacerbated by the fact that
the stellar parameters of PSR J2144-3933 are not even determined; it might even be possible
that the object is not a neutron star. For these reasons, and although this value serves as
an estimation, we will not consider it a reliable bound like those previously determined for
other astrophysical objects.

6 Discussion and conclusions

In this work we explored the consequences of the anomalous CSL heating in a variety of
astrophysical objects. This novel predicted effect enables us to constrain the characteristic
parameters of the model by estimating the values at which CSL heating would be significant
enough to contradict the observational data. The results with 3σ precision are listed in Table
2.

Based on the preceding analysis, we can now briefly discuss the advantages and disad-
vantages of the observational bounds found in each case.

White dwarfs offer probably the most robust bounds due to their relative simplicity,
well known physics, and huge amount of observational data available. However, the most
important feature of these objects is that we can actually measure their cooling using the
white dwarf luminosity function (WDLF) and the period drift of variable white dwarfs.
Most importantly the WDLF allows us to measure the time-averaged cooling rate, over long
timescales, which is precisely the aspect that would be influenced by the anomalous CSL
heating. As the WDLF also relies on the measurements of thousands of WDs, its constraints
are not affected by the uncertainties in determining the stellar parameters of individual stars.
Moreover, in this work, we adopted a very simple model for the WDLF, which limited us
to utilizing the intermediate luminosity region of the WDLF (10.5 < Mbol < 15). Current
constraints could be enhanced by incorporating the new GAIA-derived WDLFs [89], as well as
employing more sophisticated stellar and population models to derive the theoretical WDLF
[90].
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Figure 3. Schematic exclusion plot for the CSL parameters. The grey area is a theoretical limit
excluded from the requirement that macroscopic superpositions do not persist in time [88] (plot
obtained from [57]). The red zone is the bound found by Adler in [53] for the CSL anomalous
heating of a neutron star. The green zone is our bound found by thermal emission of the white dwarf
J1251+4403 and the blue zone is from the heat flow in the Moon. For the sake of completeness,
we have added two more exclusion zones. The purple is from LISA Pathfinder [34], and the yellow
zone is from Majorana Collaboration [31] (plots obtained from [57]). The white region is yet to be
determined. Also the theoretical GRW values are shown.

Aside from the WDLF, the detection of ultra-cool white dwarfs [68] provides a stringent
constraint on the CSL parameters due to spontaneous heating. Given their short reaction
timescales (thermal, hydrostatic), long-term fluctuations in the heat flow are not expected and
should not affect the constraints obtained from eq. 3.2. The main drawback of estimations
based on the surface parameters of individual WD is their strong dependence on the accuracy
of these determinations. As an example, let us note that for the star producing our best
bound (J1251+4403), previous studies [91] indicated a much lower effective temperature and
mass. Interestingly, current models suggest that stars used in this work to better constrain
CSL-heating are only a few Gyrs old. In the future, much older, and consequently dimmer
WDs will be detected. Constraints derived from ultra-cool white dwarf will be improved as
dimmer and dimmer WDs are detected in the solar neighbourhood [92].

Despite not considering the estimated value in Sect. 5 a reliable bound to the CSL
parameters, it is worth mentioning its potential for future considerations. If a neutron star
is detected with an effective temperature comparable to that of a typical white dwarf, the
constraint that could be obtained would be significantly lower due to the much more compact
size of neutron stars.
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The Solar System yields lower numerical values for the bounds, primarily due to the low
intrinsic power emitted by the planets. Specifically, Uranus provides the lowest bound among
the giant planets, and this could potentially decrease further with more precise estimations
of its heat flow. Notably, this bound could even be lower than the one obtained from Earth.
The main shortcoming is that these values rely on the implicit assumption that the measured
heat flux is representative of its mean value over time. For example, fluctuations in the heat
flow have been detected on Saturn [93], which suggests the actual bound could be higher
if the power emitted increases over time. Another shortcoming is the lack of more recent
observations, especially for the icy giants.

Earth warrants special consideration. Given the exceptionally high precision of heat flow
measurements, which are based on tens of thousands of individual measurements covering
the entire surface, Earth allows for a much stronger and more robust constraint compared to
the giant planets.

Finally, the Moon yields the lowest bound in this work, which is five orders of magnitude
lower than that previously found in [53] for neutron stars, more than two orders of magnitude
below our lowest bound for white dwarf astrophysics, and lower than the value obtained for
Earth by a factor of 3. However, as promising as this bound is, one should keep in mind that
it relies on measurements conducted in a limited region of the Moon. Consequently, possible
spatial and temporal fluctuations of the heat flux could lead to variations in the observational
estimation of the mean heat flow. Similar to the bounds obtained from the gas and icy giants,
this calculation assumes a stationary state for their intrinsic power, which cannot be assured
due to the impossibility of performing experiments over the long characteristic timescales of
these types of celestial bodies.

As mentioned in Sect. 1 and Sect. 2, the CSL parameters have been constrained
by other experiments. In Figure 3, we plot the two most restrictive ones obtained from
gravitational waves by LISA Pathfinder [34] and from spontaneous X-ray emission by the
Majorana Collaboration [31], alongside our astrophysical bounds derived from this work. In
particular, the Majorana Collaboration obtained a value for (λ/r2C)Majorana = 4.94 ± 0.15 ×
10−1s−1m−2, which is more than three orders of magnitude lower than our lowest bound.
The spontaneous X-ray emission is predicted by the CSL model from the interaction between
the noise field and charged particles [94]. The proposed theoretical value of (λ/r2C)GRW ≃
0.01 s−1m−2 remains within the acceptable region of parameter space.

On the other hand, the astrophysical bounds derived in this work, based on the spon-
taneous heating effect, are the strongest of this kind to date. In particular, the parameter
constraints from the intrinsic heat flux of the Earth and Moon establish λ ≤ 2.975×10−11 s−1

and λ ≤ 9.533×10−12 s−1, respectively, for the reference value of rC = 10−7 m. These values
of the CSL model parameters (characterized by white noise type) are currently the lowest ob-
tained using astronomical and cosmological observations (see Table 1 of [29]). Furthermore,
the Earth/Moon-derived bounds are approximately three orders of magnitude lower than
those from cold atom experiments [95] and comparable to the order of magnitude established
from low-temperature experiments of phonons [50, 51].

Our astrophysical bounds from spontaneous CSL heating could be further improved by
testing on other planets or minor bodies in the Solar System. In particular, terrestrial planets
with little geological activity such as Mars or Venus, or even dwarf planets and asteroids,
could provide lower values due to their lack of an internal heat source. The shortcoming of
this approach is the difficulty of obtaining reliable or even in situ measurements of the heat
flow for these celestial bodies.
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properties of white dwarf stars, A&ARev 18 (2010) 471 [1007.2659].

[62] L. Mestel, On the theory of white dwarf stars. I. The energy sources of white dwarfs, MNRAS
112 (1952) 583.
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