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A B S T R A C T 

Ultra-massive white dwarf stars are currently being disco v ered at a considerable rate, thanks to surv e ys such as the Gaia space 
mission. These dense and compact stellar remnants likely play a major role in Type Ia supernova explosions. It is possible 
to probe the interiors of ultra-massive white dwarfs through asteroseismology. In the case of the most massive white dwarfs, 
general relativity could affect their structure and pulsations substantially. In this work, we present results of relativistic pulsation 

calculations employing relativistic ultra-massive ONe-core white dwarf models with hydrogen-rich atmospheres and masses 
ranging from 1.29 to 1 . 369 M � with the aim of assessing the impact of general relativity on the adiabatic gravity ( g)-mode 
period spectrum of very high mass ZZ Ceti stars. Employing the relati vistic Co wling approximation for the pulsation analysis, 
we find that the critical buoyancy (Brunt–V ̈ais ̈al ̈a) and acoustic (Lamb) frequencies are larger for the relativistic case, compared 

to the Newtonian case, due to the relativistic white dwarf models having smaller radii and higher gravities for a fixed stellar 
mass. In addition, the g-mode periods are shorter in the relativistic case than those in the Newtonian computations, with relative 
differences of up to ∼50 per cent for the highest mass models (1 . 369 M �) and for effective temperatures typical of the ZZ Ceti 
instability strip. Hence, the effects of general relativity on the structure, evolution, and pulsations of white dwarfs with masses 
larger than ∼1 . 29 M � cannot be ignored in the asteroseismological analysis of ultra-massive ZZ Ceti stars. 

Key words: asteroseismology – relativistic processes – stars: evolution – stars: interiors – stars: oscillations – white dwarfs. 

1

Z
(  

T  

9  

r  

(  

2
e
t
o
o

 

∼  

s  

K  

(  

�

a

(  

(  

(  

e
1  

i  

a
o
e
o  

N  

s

c
(  

p  

b  

a  

©
P

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/4/5929/7231806 by guest on 07 August 2023
 I N T RO D U C T I O N  

Z Ceti variables are pulsating DA (H-rich atmosphere) white dwarf 
WD) stars with ef fecti ve temperatures in the range 10 500 K �
 eff � 13 500 K and surface gravities in the interval 7 . 5 � log g �
 . 35. The y e xhibit periods from ∼100 to ∼1400 s due to non-
adial gravity ( g) modes with harmonic degrees � = 1 and � = 2
Fontaine & Brassard 2008 ; Winget & Kepler 2008 ; Althaus et al.
010 ). The interiors of these compact stars, which constitute the 
volutionary end of most stars in the Universe, can be investigated 
hrough the powerful tool of asteroseismology by comparing the 
bserved periods with theoretical periods computed using large grids 
f WD stellar models (e.g. C ́orsico et al. 2019 ). 
Although most ZZ Ceti stars have masses between ∼0 . 5 and
0 . 8 M �, at least se ven ultra-massi ve ( M � � 1 . 05 M �) ZZ Ceti

tars have been discovered so far: BPM 37093 ( M � = 1 . 13 M �;
anaan et al. 1992 ; B ́edard, Bergeron & Fontaine 2017 ), GD 518

 M � = 1 . 24 M �; Hermes et al. 2013 ), SDSS J084021.23 + 522217.4
 E-mail: acorsico@fcaglp.unlp.edu.ar (AHC); rboston@live.unc.edu (SRB); 
lthaus@fcaglp.unlp.edu.ar (LGA) 
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 M � = 1 . 16 M �; Curd et al. 2017 ), WD J212402.03 −600100.05
 M � = 1 . 16 M �; Rowan et al. 2019 ), J0204 + 8713 and J0551 + 4135
 M � = 1 . 05 M � and M � = 1 . 13 M �, respectively; Vincent, Berg-
ron & Lafreni ̀ere 2020 ), and WD J004917.14 −252556.81 ( M � ∼
 . 30 M �; Kilic et al. 2023b ). With such a high stellar mass, the latter
s the most massive pulsating WD currently known. The disco v ery
nd characterization of pulsating ultra-massive WDs through aster- 
seismology is important for understanding the supernovae Type Ia 
xplosions. We know that accreting CO-core WDs are the progenitors 
f these explosions (e.g. Nugent et al. 2011 ; Maoz, Mannucci &
elemans 2014 ), but we have not been able to probe the interior

tructure of such WDs near the Chandrasekhar limit. 
Modern photometric data of pulsating WDs collected by space- 

rafts, such as the ongoing Transiting Exoplanet Survey Satellite 
 TESS ) mission (Ricker et al. 2014 ) and the already finished Ke-
ler / K2 space mission (Borucki et al. 2010 ; Howell et al. 2014 ),
rought along revolutionary impro v ements to the field of WD
steroseismology in at least two aspects (C ́orsico 2020 , 2022 ). First,
he space missions provide pulsation periods with an unprecedented 
recision. Indeed, the observational precision limit of TESS for 
he pulsation periods is of the order of ∼10 −4 s or even smaller
Giammichele, Charpinet & Brassard 2022 ). Secondly, these space 
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mailto:acorsico@fcaglp.unlp.edu.ar
mailto:rboston@live.unc.edu
mailto:althaus@fcaglp.unlp.edu.ar


5930 A. H. C ́orsico et al. 

M

m  

W  

t  

n  

C  

o  

W  

s  

B  

s  

W  

s  

a  

i
 

u  

n  

p  

b  

q  

o  

i  

(  

r  

E  

e  

w  

t  

b  

b  

a  

t  

n  

p
 

c  

d  

(  

(  

c  

s  

s  

I  

c  

c  

(  

m
 

m  

�  

t  

a  

f  

o  

t  

t  

s  

c  

a  

f  

i  

o  

2  

p  

W  

p  

T  

S
 

C  

p  

s  

r  

t  

p  

s  

d  

t  

L  

t  

v  

q  

o  

(  

s
 

a  

c  

1  

S  

g  

C  

v  

(  

t  

o  

F  

r  

u  

i  

i  

(  

a  

t  

W  

g  

a  

(
 

t  

S  

p  

s  

n  

b  

r  

S  

S  

(  

r  

c  

i  

D  

o  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/4/5929/7231806 by guest on 07 August 2023
issions also enable the disco v ery of large numbers of new pulsating
Ds. F or e xample, Romero et al. ( 2022 ) used the TESS data from

he first 3 yr of the mission, for Sectors 1 through 39, to identify 74
ew ZZ Ceti stars, which increased the number of already known ZZ
etis by ∼20 per cent. It is likely that many more pulsating WDs, not
nly average-mass ( M � ∼ 0 . 60 M �) objects but also ultra-massive
Ds, will be identified by TESS and other future space telescopes

uch as the Ultraviolet Transient Astronomy Satellite ( ULTRASAT ;
en-Ami et al. 2022 ) in the coming years, though TESS ’s relatively

mall aperture limits its ability to observe intrinsically fainter massive
Ds. In addition, large-scale wide-field ground-based photometric

urv e ys like the Vera C. Rubin Observatory’s Le gac y Surv e y of Space
nd Time and the BlackGEM (Groot et al. 2022 ) will significantly
ncrease the population of WD pulsators, including massive WDs. 

The use of space telescopes for WD asteroseismology has opened
p a new window into the interiors of these stars and led to some
ew and interesting questions. F or e xample, the availability of
ulsation periods with high precision supplied by modern space-
ased photometric observations has, for the first time, raised the
uestion of whether it is possible to detect very subtle effects in the
bserved period patterns, such as the signatures of the current exper-
mental 12 C( α, γ ) 16 O reaction rate probability distribution function
Chidester, Farag & Timmes 2022 ), or the possible impact of general
elativity (GR) on the pulsation periods of ZZ Ceti stars (Boston,
vans & Clemens 2023 ). In particular, the possibility that relativistic
ffects can be larger than the uncertainties in the observed periods
hen measured with space missions has led Boston et al. ( 2023 )

o conclude that, for average-mass WDs, the relative differences
etween periods in the Newtonian and relativistic calculations can
e larger than the observational precision with which the periods
re measured. Hence, to fully exploit the unprecedented quality of
he observational data from TESS and similar space missions, it is
ecessary to take into account the GR effects on the structure and
ulsations of WDs. 
The impact of GR is stronger as we consider more massive WD

onfigurations, in particular WDs with masses close to the Chan-
rasekhar mass ( M Ch ∼ 1 . 4 M �). Carvalho, Marinho & Malheiro
 2018 ), Nunes, Arba ̃ nil & Malheiro ( 2021 ), and Althaus et al.
 2022 ) used static WD models and evolutionary ONe-core WD
onfigurations, respectively, to explore the effects of GR on the
tructure of ultra-massive WDs. These investigations found that GR
trongly impacts the radius and surface gravity of ultra-massive WDs.
n addition, Althaus et al. ( 2022 ) found that GR leads to important
hanges in cooling ages and in mass–radius relationships when
ompared with Newtonian computations. Furthermore, Althaus et al.
 2023 ) hav e e xtended the relativistic computations to CO-core ultra-
assive WD models. 
In this work, we aim to assess the impact of GR on the g-
ode period spectra of ultra-massive ZZ Ceti stars with masses
1 . 29 M �. This is the lower limit for the WD mass from which

he effects of GR begin to be rele v ant (Althaus et al. 2022 ). Our
nalysis is complementary to that of Boston et al. ( 2023 ), which is
ocused on average-mass pulsating DA WDs ( ∼0 . 60 M �; the bulk
f pulsating WD population). For these average-mass DA WDs,
he difference of Newtonian physics and GR was shown to be of
he order of the surface gravitational redshift z ∼ 10 −4 , though for
tars with very high central concentration of mass this difference
ould be an order of magnitude larger. Since the ultra-massive WDs
re highly centrally condensed, GR might be even more important
or these objects. The study of ultra-massive WDs is of particular
nterest at present, given the increasing rate of disco v ery of these
bjects (Gagn ́e et al. 2018 ; Hollands et al. 2020 ; Kilic et al. 2020 ,
NRAS 524, 5929–5943 (2023) 
021 , 2023a ; Caiazzo et al. 2021 ; Torres et al. 2022 ) and the
rospect of finding pulsating ultra-massive WDs more massive than
D J004917.14 −252556.81 (Kilic et al. 2023b ). This last point is

articularly rele v ant in vie w of the capabilities of the current (e.g.
ESS ) and upcoming (e.g. ULTRASAT , LSST (Le gac y Surv e y of
pace and Time), and BlackGEM) surv e ys. 
The formalism of stellar pulsations in GR began with Thorne &

ampolattaro ( 1967 ), using the Regge–Wheeler gauge to treat the
ulsations as linear perturbations on top of a static, spherically
ymmetric background (Regge & Wheeler 1957 ). The result was a
eduction in the Einstein field equations (EFEs) that describe space-
ime curvature in GR to only five complex-valued equations for the
erturbation amplitudes. Further theoretical work showed that this
ystem was only fourth-complex-order, with two degrees of freedom
escribing the fluid perturbations and two describing the gravita-
ional perturbations (Ipser & Thorne 1973 ). Later, Detweiler &
indblom ( 1985 ) (see also Lindblom & Detweiler 1983 ) reduced

he perturbed EFEs to the explicit form of four first-order complex-
alued equations describing the normal mode perturbations. For
uadrupole modes or higher ( � ≥ 2), the two gravitational degrees
f freedom at the surface produce outgoing gravitational radiation
i.e. gra vitational wa ves) that will gradually damp an y e xcitations,
o that stellar perturbations in GR can be at best quasi-normal. 

In asteroseismology, the outgoing gravitational radiation is largely
n undesired complication, requiring specialized methods to a v oid
arrying the boundary condition out to spatial infinity (Fackerell
971 ; Chandrasekhar & Detweiler 1975 ; Andersson, Kokkotas &
chutz 1995 ; Lindblom, Mendell & Ipser 1997 ). The outgoing
ra vitational wa ves can be easily remo v ed using a form of the
owling approximation within GR, first developed by McDermott,
an Horn & Scholl ( 1983 ) and further studied by Lindblom & Splinter
 1990 ), McDermott et al. ( 1985 ), and Yoshida & Lee ( 2002 ). In
his relativistic Cowling approximation, the gravitational degrees
f freedom are set to zero, retaining only the fluid perturbations.
urther, there is no intrinsic damping, so that the problem becomes
eal-valued and the modes are stationary. This treatment is widely
sed to study the pulsation and stability of compact stellar objects
n situations where knowledge of the outgoing gra vitational wa ves
s irrele v ant, and especially in stars with surface crystallization
Yoshida & Lee 2002 ; Flores, Hall & Jaikumar 2017 ). Another
pproach to include the relativistic effects in stellar pulsations is
o use the post-Newtonian approximation (Cutler 1991 ; Poisson &

ill 2014 ; Boston et al. 2023 ). This approach is able to include
ravitational perturbations in the form of two scalar potentials and
 vector potential, without also producing gravitational radiation
Boston 2022 ). 

Most interest in pulsations of relativistic stars has focused on neu-
ron stars (e.g. McDermott, van Horn & Hansen 1988 ; Lindblom &
plinter 1989a ; Cutler & Lindblom 1992 ). The earliest calculations of
ulsations in WDs involving GR tried to address the origin of radio
ources disco v ered by Hewish et al. ( 1968 ), as an alternative to a
eutron star origin (Thorne & Ipser 1968 ). These studies, which date
ack to the late 1960s, were devoted to computing the fundamental
adial pulsation mode of Hamada–Salpeter WD models (Hamada &
alpeter 1961 ) including GR effects (Faulkner & Gribbin 1968 ;
killing 1968 ; Cohen, Lapidus & Cameron 1969 ). Boston et al.
 2023 ) have recently renewed interest in this topic by focusing on
elativistic pulsations of ZZ Ceti stars and other pulsating WDs,
oncentrating on average-mass WDs. In this paper, we study the
mpact of GR on realistic evolutionary stellar models of ultra-massive
A WDs computed by Althaus et al. ( 2022 ), which are representative
f very high mass ONe-core ZZ Ceti stars. As a first step, in this work
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Figure 1. The stellar radius (upper panels) and gravity (bottom panels) in 
terms of the outer mass fraction coordinate corresponding to ultra-massive 
DA WD models with M � = 1 . 29 M � (left) and M � = 1 . 35 M � (right), the 
GR case (black curves) and the N case (red curves) ( T eff ∼ 12 000 K). 
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e adopt the relati vistic Co wling approximation described abo v e to
ncorporate relativistic effects in the pulsation calculations, following 
he treatment provided in Yoshida & Lee ( 2002 ). In future papers,
e plan to examine the post-Newtonian and full fourth-order GR 

quations, applied to ultra-massive ONe-core WDs and to ultra- 
assive CO-core WDs (C ́orsico et al., in preparation). 
The paper is organized as follows. In Section 2 , we briefly describe

he relativistic WD models computed by Althaus et al. ( 2022 ),
mphasizing the impact of GR on the stellar structure. We devote 
ection 3 to describe our approach for the relativistic non-radial stel-

ar pulsations, particularly the formalism of the relativistic Cowling 
pproximation (Sections 3.1 , 3.2 , 3.3 , and 3.4 ). The pulsation results
or our ultra-massive WD models are described in Section 4 . Finally,
n Section 5 we summarize our findings. We present in Appendix A
 deri v ation of the relati vistic version of the ‘modified Ledoux’
reatment of the Brunt–V ̈ais ̈al ̈a frequency, and in Appendix B the
esults of a validation of the main results of the paper using a toy
odel based on Chandrasekhar’s models. 

 RELATIVISTIC  ULTRA-MASSIVE  W D  

O D E L S  

o determine whether to employ GR or Newtonian gravity in a 
ystem like a star, a qualitative general criterion commonly used 
s to assess the magnitude of the ‘relativistic correction factor’, ε, 
efined as ε = GM � /c 

2 R � , where G is the Newtonian gravitational
onstant, c is the speed of light, and M � and R � are the stellar
ass and radius, respectively (Poisson & Will 2014 ). 1 The larger 

he value of ε, the worse the approximation of Newtonian gravity. 
or instance, for a neutron star, ε is of the order of ∼0 . 1, while
or a black hole, ε ∼ 1. For average-mass ( ∼0 . 6 M �) WDs, ε is
10 −4 , and that is why until recently the relati vistic ef fects have

een neglected in the calculation of their structures. If we instead 
onsider an ultra-massive WD star with M ∼ 1 . 3 M � and ε ∼ 0 . 001,
t first glance, it is not clear whether the relativistic effects should
e included or not. Ho we ver, Carv alho et al. ( 2018 ) showed that
or the most massive WDs, the importance of GR for their structure
nd evolution cannot be ignored. In f act, numerous w orks based on
tatic WD structures have shown that GR effects are relevant for the
etermination of the radius of massive WDs (Rotondo et al. 2011 ;
athew & Nandy 2017 ; Carvalho et al. 2018 ; Nunes et al. 2021 ). In

articular, these studies have demonstrated that for fixed values of 
ass, deviations of up to 50 per cent in the Newtonian WD radius

re expected compared to the GR WD radius. Recently, Althaus et al.
 2022 ) have presented the first set of constant-rest-mass ONe-core 
ltra-massi ve WD e volutionary models with masses greater than 
1 . 30 M � (and up to 1 . 369 M �) that fully take into account the

ffects of GR. This study demonstrates that the GR effects must be
onsidered to assess the structural and evolutionary properties of the 
ost massive WDs. This analysis has been extended recently by 
lthaus et al. ( 2023 ) to ultra-massive WDs with CO cores that result

rom the complete evolution of single progenitor stars that a v oid
-ignition (Althaus et al. 2021 ; Camisassa et al. 2022 ). 
Althaus et al. ( 2022 ) employed the LPCODE stellar evolution code,

ppropriately modified to take into account relativistic effects. They 
onsidered initial chemical profiles as predicted by the progenitor 
volutionary history (Siess 2007 , 2010 ; Camisassa et al. 2019 ), and
omputed model sequences of 1 . 29 , 1 . 31 , 1 . 33 , 1 . 35, and 1 . 369 M �
 The parameter ε is nothing more than the surface gravitational redshift in 
he Newtonian limit, z. 

w  

p  

s  

t  
Ds. The standard equations of stellar structure and evolution 
ere generalized to include the effects of GR following Thorne 

 1977 ). In particular, the modified version of LPCODE computes the
imensionless GR correction factors HGV and R , which turn to unity 
n the Newtonian limit. These factors correspond, respectively, to the 
nthalpy, gravitational acceleration, volume, and redshift correction 
arameters. For comparison purposes, Althaus et al. ( 2022 ) have
lso computed the same WD sequences for the Newtonian gravity 
ase. All these sequences included the energy released during the 
rystallization process, both due to latent heat and the induced 
hemical redistribution, as in Camisassa et al. ( 2019 ). 

We briefly describe below some of the properties of the represen-
ative models of ultra-massive ONe-core WD stars, emphasizing the 
mpact of GR on their structure. We refer the reader to the paper by
lthaus et al. ( 2022 ) for a detailed description of the effects of GR
n the structural properties of these models. Here, we choose two
emplate WD models characterized by stellar masses M � = 1 . 29 M �
nd M � = 1 . 35 M �, H envelope thickness of log ( M H /M � ) ∼ −6,
nd an ef fecti ve temperature of T eff ∼ 12 000 K, typical of the ZZ
eti instability strip. We distinguish between two cases: one in 
hich we consider Newtonian WD models (N case), and another 
ne in which the WD structure is relativistic (GR case). In Fig. 1 ,
e plot the run of the stellar radius and gravity in terms of the
uter mass fraction coordinate, corresponding to WD models with 
 � = 1 . 29 M � (left-hand panels) and M � = 1 . 35 M � (right-hand

anels), for the GR case (black curves) and the N case (red curves).
learly, GR induces smaller radii and larger gravities, and this effect

s much more pronounced for larger stellar masses. 
In Table 1 , which is a shortened version of table 1 of Althaus et al.

 2022 ), we include the values of the stellar radius and the surface
ravity for models with T eff = 10 000 K and masses between 1 . 29
nd 1 . 369 M � in the GR and N cases. As can be seen, the impact of
R on the radius and gravity of the models is noticeable. In Fig. 2 ,
e plot the relative differences �R � = | R 

GR 
� − R 

N 
� | /R 

GR 
� (left-hand

anel) and �g = ( g GR − g N ) /g GR (right-hand panel) in terms of the
tellar mass. The stellar radius is lower by ∼3 per cent (1 . 29 M �)
o ∼34 per cent (1 . 369 M �), and the surface gravity is higher by
MNRAS 524, 5929–5943 (2023) 
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Table 1. Stellar masses, radii, and surface gravities of the ultra-massive 
ONe-core WD models at T eff = 10 000 K in the relativistic and Newtonian 
cases. 

M � / M � R 

GR 
� R 

N 
� log g GR log g N 

( ×10 8 cm) ( ×10 8 cm) (cm s −2 ) (cm s −2 ) 

1.29 2.609 2.685 9.401 9.375 
1.31 2.326 2.426 9.507 9.470 
1.33 2.005 2.157 9.643 9.579 
1.35 1.543 1.829 9.878 9.728 
1.369 1.051 1.409 10.217 9.961 
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Figure 2. Left: the absolute relative difference between relativistic and 
Newtonian stellar radii versus stellar mass. Right: the relative difference 
between the relativistic and Newtonian surface gravities in terms of the stellar 
mass. 
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6 per cent (1 . 29 M �) to ∼44 per cent (1 . 369 M �) compared to the
ase where GR is neglected. The typical observational uncertainties
n the radii and surface gravities of the most massive WDs in the

ontreal White Dwarf Database 100 pc sample (Kilic et al. 2021 )
re 3 and 6 per cent, respectively. Hence, the differences between
he GR and N cases can be detected observationally for WDs with

asses abo v e ∼1 . 3 M �. These discrepancies must have important
onsequences for the pulsational properties of ultra-massive WDs,
s we will see in Section 4.2 . 

 RELATIVISTIC  N O N - R A D I A L  STELLAR  

ULSATION S  IN  W D S  

n order to incorporate the relati vistic ef fects in the pulsations of
Ds, we adopt the relativistic Cowling approximation in the form

eveloped by Yoshida & Lee ( 2002 ), and follow the GR formalism
rovided in Boston ( 2022 ). 

.1 The relativistic Cowling approximation 

he Cowling approximation of Newtonian non-radial pulsations
named after T. G. Cowling’s pioneer paper; Cowling 1941 ) is
ased on neglecting the gravitational potential perturbations during
he fluid oscillations. This approximation has been widely used in
ewtonian non-radial pulsation computations in the past, because

t constitutes a second-order differential eigenvalue problem, thus
implifying the complete fourth-order problem (Unno et al. 1989 ).
t is also a very good approximation to periods of g modes in WDs,
hich are primarily envelope modes (Montgomery et al. 1999 ).
NRAS 524, 5929–5943 (2023) 
he Cowling approximation has been frequently used in asymptotic
reatment of stellar pulsations (see, for instance, Tassoul 1980 ), and
lso in numerical treatments of g-mode pulsations in rapidly rotating
Ds (e.g. Saio 2019 ; Kumar & Townsley 2023 ), although it has

allen out of use in the context of present-day numerical calculations
f Newtonian non-radial stellar pulsations and asteroseismology.
he relati vistic Co wling approximation (McDermott et al. 1983 ),
n the other hand, is generally employed in the field of pulsations
f relativistic objects such as neutron stars (Lindblom & Splinter ;
oshida & Lee 2002 ; Sotani & Takiwaki 2020 ) and hybrid (hadron
lus quark matter phases) neutron stars (Tonetto & Lugones 2020 ;
heng et al. 2023 ). 
In the next sections, we first describe the relativistic correction fac-

ors involved in the pulsation problem. Then, we provide relativistic
xpressions to calculate the critical frequencies (Brunt–V ̈ais ̈al ̈a and
amb frequencies), after which we assess the coefficients of the pul-
ation differential equations in the relativistic Cowling form. Finally,
e provide the two first-order differential equations to be solved,

long with the boundary conditions of the eigenvalue problem. 

.2 Relativistic correction factors R , V , and potentials ν and λ

e start by considering the Schwarzschild metric of GR for space-
ime inside and around a star (Thorne 1977 ): 

 s 2 = −e 2 �/c 2 c 2 d t 2 + 

(
1 − 2 Gm 

c 2 r 

)−1 

d r 2 + r 2 d 	2 , (1) 

here m is the ‘total mass inside radius r’, which includes the
est mass, nuclear binding energy, internal energy, and gravity. �
s a gravitational potential, which in the Newtonian limit c → ∞
orresponds to the scalar Newtonian potential. 

Following Thorne ( 1977 ) in his treatment of relativistic stellar
nteriors, it is convenient to write the metric in the form 

 s 2 = −R 

2 c 2 d t 2 + V 

2 d r 2 + r 2 d 	2 , (2) 

here the redshift correction factor R and the volume correction
actor V are defined as (Thorne 1977 ) 

 = e �/c 2 , V = 

(
1 − 2 Gm 

c 2 r 

)−1 / 2 

. (3) 

he metric is usually written also as a function of two relativistic
ravitational potentials ν and λ (Oppenheimer & Volkoff 1939 ;
olman 1939 ), so that 

 s 2 = −e νc 2 d t 2 + e λd r 2 + r 2 d 	2 . (4) 

quating equations ( 1 ) and ( 4 ), we have 

= 

2 � 

c 2 
, and λ = − ln 

(
1 − 2 Gm 

c 2 r 

)
. (5) 

e obtain ν and λ in terms of the variables R and V , which are
he output of the relativistic LPCODE version (Althaus et al. 2022 ) by
quating equations ( 2 ) and ( 4 ): 

 

2 = e ν, V 

2 = e λ, (6) 

o that 

= 2 ln R , λ = 2 ln V . (7) 

In the Newtonian limit, we have R = e ν/ 2 → 1 and V = e λ/ 2 → 1,
o that ν, λ → 0. 
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We compute the deri v ati ves of ν and λ by calculating the numerical
eri v ati ves of R and V as 

′ ≡ d ν

d r 
= 

2 

R 

(
d R 

d r 

)
, λ′ ≡ d λ

d r 
= 

2 

V 

(
d V 

d r 

)
. (8) 

The numerical deri v ati ves of R and V , as well as ν ′ and λ′ , are
sually noisy when computed following equation ( 8 ). To a v oid this,
e compute ν ′ and λ′ by employing solutions to the EFE for the 

tatic, spherically symmetric distribution of matter, given by Tolman 
 1939 ) and Oppenheimer & Volkoff ( 1939 ) (see also Tooper 1964 ): 

 

−λ

(
1 

r 2 
− λ′ 

r 

)
− 1 

r 2 
= −8 πG 

c 4 
ρc 2 , (9) 

 

−λ

(
1 

r 2 
+ 

ν ′ 

r 

)
− 1 

r 2 
= 

8 πG 

c 4 
P , (10) 

1 

2 
e −λ

[
ν ′′ + 

1 

2 

(
ν ′ − λ′ )(ν ′ + 

2 

r 

)]
= 

8 πG 

c 4 
P , (11) 

here P is the pressure and ρ is the mass-energy density (not just
he mass density). With some rearranging, we can write 

′ = 

1 

r 
+ 

(
8 πG 

c 2 
ρr − 1 

r 

)
e λ, (12) 

′ = −1 

r 
+ 

(
8 πG 

c 4 
P r + 

1 

r 

)
e λ, (13) 

′′ = 

16 πG 

c 4 
P e λ − 1 

2 

(
ν ′ − λ′ )(ν ′ + 

2 

r 

)
≡ d 2 ν

d r 2 
. (14) 

To summarize, in our numerical treatment we employ equa- 
ions ( 12 ) and ( 13 ) to compute λ′ and ν ′ using the value of λ calculated
ith equation ( 7 ). We employ equation ( 14 ) to assess ν ′′ using λ, λ′ ,

nd ν ′ deriv ed abo v e. The quantity ν ′′ is required to compute one of
he coefficients of the pulsation differential equations (Section 3.4 ). 

.3 Relativistic adiabatic exponent, sound speed, and Lamb 

nd Brunt–V ̈ais ̈al ̈a frequencies 

he relativistic adiabatic exponent, defined as � 1 = 

(
∂ log P 
∂ log n 

)
ad 

, 

here n is the baryonic number density, can be expressed as
Meltzer & Thorne 1966 ; Thorne 1967 ) 

 1 = 

ρ + ( P /c 2 ) 

P 

(
∂P 

∂ρ

)
ad 

= 

ρ + ( P /c 2 ) 

ρ

(
∂ log P 

∂ log ρ

)
ad 

. (15) 

his should be compared with the Newtonian case, where � 1 = 

∂ log P 
∂ log ρ

)
ad 

. The relativistic sound speed, v s , is given by (Curtis 1950 ) 

 

2 
s = 

� 1 P 

ρ + ( P /c 2 ) 
, (16) 

hereas in the Newtonian case, v 2 s = 

(
∂P 
∂ρ

)
ad 

= � 1 
P 
ρ

. 

The squared Lamb and Brunt–V ̈ais ̈al ̈a critical frequencies of the
on-radial stellar pulsations, L 

2 
� and N 

2 , can be written as (Boston
022 ) 

 

2 
� = � ( � + 1) 

v 2 s 

r 2 
, (17) 

 

2 = 

c 2 

2 r 
ν ′ e −λ

[
1 

� 1 

(
d log P 

d log r 

)
− ρ

ρ + ( P /c 2 ) 

(
d log ρ

d log r 

)]
. (18) 

his expression for N 

2 is analogous to the Newtonian version of N 

2 

or g → 

c 2 

2 ν
′ and an additional relativistic correction factor e −λ. 

The relativistic prescription given by equation ( 18 ) for the assess-
ent of the Brunt–V ̈ais ̈al ̈a frequency is not well defined numerically,
ue to the high degree of electronic de generac y pre v ailing in the core
f the ultra-massive WDs, similar to the case of Newtonian pulsations
Brassard et al. 1991 ). In particular, the use of equation ( 18 )
eads to unacceptable numerical noise of N , which can lead to

iscalculations of the adiabatic g-mode periods. To a v oid this
roblem, we employ a numerically convenient relativistic expression, 
nalogous to the Newtonian recipe known as the modified Ledoux 
rescription (Tassoul, Fontaine & Winget 1990 ). The appropriate 
elativistic expression for N 

2 , which is derived in Appendix A , is 

 

2 = e −λ

(
c 2 

2 
ν ′ 
)2 

ρ + ( P /c 2 ) 

P 

χT 

χn 

[ ∇ ad − ∇ + B ] , (19) 

here B is the Ledoux term, defined as 

 = − 1 

χT 

M−1 ∑ 

i= 1 

χX i 

d ln X i 

d ln P 

, (20) 

 being the number of different atomic species with fractional 
bundances X i that satisfy the constraint 

∑ M−1 
i= 1 X i + X M 

= 1. The
ompressibilities χT , χn , and χX i are defined as, similar to the 
ewtonian problem, 

T = 

(
∂ ln P 

∂ ln T 

)
n, { X i } 

, χn = 

(
∂ ln P 

∂ ln n 

)
T , { X i } 

, χX i = 

(
∂ ln P 

∂ ln X i 

)
T ,n 

. 

(21) 

sing (d ln ρ/ d ln n ) = ( ρ + P /c 2 ) /ρ (equation 5.90 of Boston
022 ; see also Thorne 1967 ), the compressibility χn can be computed
s 

n = 

ρ + ( P /c 2 ) 

ρ
χρ, (22) 

here χρ = 

(
∂ ln P 
∂ ln ρ

)
T , { X i } 

. Here, ∇ ad and ∇ are the adiabatic and

ctual temperature gradients, respectively, defined as 

 ad = 

(
∂ ln T 

∂ ln P 

)
ad , { X i } 

, ∇ = 

d ln T 

d ln P 

. (23) 

Equation ( 19 ) is completely analogous to the Newtonian 
xpression for the squared Brunt–V ̈ais ̈al ̈a frequency, N 

2 =
 

2 ( ρ/P )( χT /χρ) [ ∇ ad − ∇ + B ] . In the relativistic formula, g has
een replaced by c 2 ν ′ / 2, and the ratio ρ/P becomes ( ρ + P /c 2 ) /P .
here is an additional relativistic factor, e −λ, and the compressibility
ρ is replaced by χn , where n is the baryonic number density. 

.4 Differential equations of the relativistic Cowling 
pproximation 

ere, we formulate the system of differential equations of the non-
adial pulsations in the relativistic Cowling approximation form 

hat results when we ignore Eulerian metric perturbations in the 
ulsation equations (McDermott et al. 1983 ). This reduces the 
ourth-complex-order problem of non-radial pulsations in GR to 
 second-real-order problem, which can be written as two real, 
rst-order dif ferential equations. Follo wing Yoshida & Lee ( 2002 ),
e define the dimensionless variables ω, y 1 , and y 2 , analogous to
ziembo wski’s v ariables in Ne wtonian pulsations (Dziembo wski 
MNRAS 524, 5929–5943 (2023) 
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Figure 3. The relativistic potentials ν (black) and λ (blue), in terms of 
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core WD models with masses M � = 1 . 29 M � and M � = 1 . 35 M �, and 
ef fecti ve temperature T eff ∼ 12 000 K. Note the high peaks in the stellar 
centre, indicating the increased gravitational strength of the core, and that the 
more massive star shows more extreme values. At the surface, ν → −λ. 
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971 ): 2 

 

2 = 

R 

3 
� 

GM � 

σ 2 , y 1 = 

ξr 

r 
e −i σ t , y 2 = ξh C 1 ω 

2 e −i σ t , (24) 

here ξr and ξh correspond to the Lagrangian radial and horizontal
isplacements, respectively. We also define the following dimen-
ionless functions, analogous to Dziembowski’s coefficients (Dziem-
owski 1971 ), calculated with respect to the stellar equilibrium model
Boston 2022 ): 

 g ( r) = − 1 

� 1 

(
d log P 

d log r 

)
= 

ρ + ( P /c 2 ) 

� 1 P 

rc 2 

2 
ν ′ , (25) 

 1 ( r) = 2 + r 
ν ′′ 

ν ′ , (26) 

 2 ( r) = rλ′ , (27) 

 1 ( r) = 

GM � 

c 2 R 

3 
� 

2 r 

ν ′ e 
−ν, (28) 

nd (Thorne 1966 ) 

 

∗( r ) = 

1 

� 1 

(
d log P 

d log r 

)
− ρ

ρ + ( P /c 2 ) 

(
d log ρ

d log r 

)
= 

r N 

2 

c 2 ν ′ / 2 
e λ. (29) 

n the Newtonian limit, A 

∗, V g , and C 1 will limit to their conventional
xpressions (Unno et al. 1989 ). On the other hand, in the Newtonian
imit we have that U 1 tends to U , which is defined in Unno et al.
 1989 ), and U 2 → 0. Using these definitions, and defining x = r/R � ,
he resulting differential equations for the relativistic Cowling
pproximation (McDermott et al. 1983 ; Lindblom & Splinter ;
oshida & Lee 2002 ; Boston 2022 ) are 

 

d y 1 
d x 

= 

(
V g − 3 + U 2 

)
y 1 + 

(
� ( � + 1) 

C 1 ω 

2 
− V g 

)
y 2 , (30) 

 

d y 2 
d x 

= 

(
e λC 1 ω 

2 − A 

∗) y 1 + 

(
1 + A 

∗ − U 1 

)
y 2 . (31) 

n the Newtonian limit, we have e λ → 1 and U 2 → 0, and the
quations adopt exactly the form of the Newtonian Cowling
pproximation (Cowling 1941 ; Unno et al. 1989 ). The boundary
onditions for this system of differential equations are at the stellar
fluid) centre ( x = 0) 

 1 C 1 ω 

2 − �y 2 = 0 , (32) 

nd at the stellar surface ( x = 1) 

 1 − y 2 = 0 , and y 1 = 1 ( normalization condition ) . (33) 

hese are the same boundary conditions as for the Newtonian
owling approximation. 
F or the ultra-massiv e WD models considered in this work, the

tellar core is crystallized, so that the so-called hard-sphere boundary
onditions (Montgomery et al. 1999 ) may be adopted, which exclude
he g-mode oscillations from the solid core regions. In that case,
quation ( 32 ) is replaced by the condition 

 1 = 0 and y 2 = arbitrary , (34) 

t the radial shell x = x crys associated with the outward-moving
rystallization front, instead of the centre of the star ( x = 0). To
aintain consistency between Newtonian and GR calculations and

or a clean comparison, we assume the same internal boundary
NRAS 524, 5929–5943 (2023) 

 At variance with Boston ( 2022 ), we use σ for the physically meaningful 
scillation frequency and ω for the dimensionless frequency, following Unno 
t al. ( 1989 ). 

I  

I  

ν  

t  
ondition for the GR case as for the N case that the eigenfunctions
re approximately zero in the solid core, and can be treated with a
ard-sphere boundary condition. 
In this work, to take into account the relativistic effects on g-
ode pulsations of crystallized ultra-massive WD models, the LP-

UL pulsation code (C ́orsico & Althaus 2006 ) has been appropriately
odified to solve the problem of relativistic pulsations in the Cowling

pproximation as given by equations ( 30 ) and ( 31 ), with boundary
onditions given by equations ( 33 ) and ( 34 ). 

 PULSATION  RESULTS  

.1 Properties of template models 

t is illustrative to examine the metric parameters ν, λ, ν ′ , λ′ , and ν ′′ .
n Figs 3 , 4 , and 5 , we show the ν and λ and their deri v ati ves ν ′ , λ′ , and
′′ , in terms of the outer mass fraction coordinate, corresponding to

he two template WD models with masses M � = 1 . 29 M � (left) and
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igure 6. Upper panels: abundances by mass of the different chemical species
odels with masses M � = 1 . 29 M � (left) and M � = 1 . 35 M � (right), and ef fec
runt–V ̈ais ̈al ̈a and Lamb ( � = 1) frequencies for the GR case (solid lines) and th

egions, in which g modes cannot propagate. 
ravitational values are more extreme than near the surface, pointing 
o the high central concentration of the mass of these stars. 

The chemical profiles (abundances by mass, X i ) of the different
uclear species corresponding to the template models are plotted 
n the upper panels of Fig. 6 as a function of the fractional outer

ass. In the lower panels, we depict the logarithm of the squared
runt–V ̈ais ̈al ̈a (black lines) and dipole ( � = 1) Lamb (red lines)

requencies for the GR case (solid lines) and the N case (dashed
ines). We have emphasized the crystallized regions of the core 
ith grey. The chemical interface of 12 C, 16 O, and 20 Ne, which is

ocated at − log (1 − M r /M � ) ∼ 1 . 5, is embedded in the crystalline
art of the core for both template models. Since we assume that
-mode eigenfunctions cannot penetrate the solid regions (due to 

he hard-sphere boundary condition, equation 34 ), this chemical 
nterface is not rele v ant for the mode-trapping properties of the

odels. The chemical transition region between 12 C, 16 O, and 4 He 
 − log (1 − M r /M � ) ∼ 4 . 5], which is located in the fluid region
n both models, also does not have a significant impact on the
ode-trapping properties. Thus, mode-trapping properties are almost 

ntirely determined by the presence of the 4 He/ 1 H transition, which
s located in the fluid external regions, at − log (1 − M r /M � ) ∼ 6. 

By closely inspecting Fig. 6 , we conclude that the Brunt–V ̈ais ̈al ̈a
nd Lamb frequencies for the N and GR cases are similar for the
MNRAS 524, 5929–5943 (2023) 
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Figure 8. Same as Fig. 7 , but for the quantity U 1 (equation 26 ). 

m  

f  

h  

i  

a  

t  

v  

s
 

e  

N  

t  

a  

c  

t  

t  

a  

r  

0 2 4 6 8 10 12
-log(1-Mr/M*)

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

U
2

U2 (GR)

0 2 4 6 8 10 12
-log(1-Mr/M*)

1.29 Mo
1.35 Mo

cr
ys

ta
lli

ze
d 

co
re

cr
ys

ta
lli

ze
d 

co
re
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Figure 10. Same as Fig. 7 , but for the quantity C 1 (equation 28 ). 
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odel with M � = 1 . 29 M �, although they are significantly different
or the M � = 1 . 35 M � model, with both critical frequencies being
igher for the GR case than for the N case. Because of this, it
s expected that g-mode frequencies shift to larger values so that
ll periods experience a global offset towards shorter values in
he relativistic case, compared to the Newtonian case. This will be
erified with the calculations of the g-mode period spectra in both
ituations (Section 4.2 ). 

We close this section by comparing the coefficients of the differ-
ntial equations of the relativistic Cowling approximation with their
ewtonian counterparts. In Figs 7–11 , we depict with black curves

he dimensionless functions V g , U 1 , U 2 , C 1 , and A 

∗ in the GR case,
s defined by equations ( 25 ) to ( 29 ), along with the same quantities
orresponding to the N case (red curves), computed according to
heir definition (see e.g. Unno et al. 1989 ). We include the cases of
he two template WD models with M � = 1 . 29 M � (left-hand panel)
nd M � = 1 . 35 M � (right-hand panel). We marked the crystallized
egion in each model with a grey area with a dashed blue boundary.
NRAS 524, 5929–5943 (2023) 
hese figures demonstrate that the dimensionless quantities in the
R case are very similar to the ones for the N case, and this is true

or both of the representative models. This is not surprising, since
he relativistic correction factors ν and λ and their deri v ati ves ν ′ , λ′ ,
nd ν ′′ , which are included in the calculation of the dimensionless
oefficients, are small. For the specific case of A 

∗, some numerical
oise is observed in the core regions. This is irrele v ant for the
urposes of this investigation, since those regions are contained in the
rystallized core and do not affect the g modes, which are prevented
rom propagating in the solid phase. 

.2 Newtonian and relativistic g-mode period spectra 

e computed N and GR non-radial g-mode � = 1 adiabatic pulsation
eriods in the range 50 s � � � 2000 s using an updated version of
he LP-PUL pulsation code that includes the capability to solve the pul-
ation equations in the relativistic Cowling approximation described
n Section 3.1 . The N-case pulsation periods were calculated by
olving the differential problem of the Newtonian non-radial stellar
ulsations (Unno et al. 1989 ). We emphasize that in the GR case we
re using evolutionary WD models calculated in GR with relativistic,
econd-order Cowling mode pulsations that ignore gravitational
i.e. spacetime) perturbations, while in the N case we are using



White dwarf relativistic pulsations 5937 

0 2 4 6 8 10 12
-log(1-Mr/M*)

-6

-5

-4

-3

-2

-1

0

1

2

3

4
lo

g 
A

*

log A
*
 (GR)

log A
*
 (N)

0 2 4 6 8 10 12
-log(1-Mr/M*)

1.29 Mo
1.35 Mo

cr
ys

ta
lli

ze
d 

co
re

cr
ys

ta
lli

ze
d 

co
re

Figure 11. Same as Fig. 7 , but for the logarithm of the quantity A 

∗
(equation 29 ). 
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volutionary WD models calculated with Newtonian gravity and 
ewtonian, fourth-order mode pulsations that include gravitational 
erturbations. 3 We have also computed Newtonian periods by solving 
he second-order Newtonian Cowling approximation (Unno et al. 
989 ). For g modes, these second-order periods are sufficiently 
imilar to the fourth-order periods used in the N case, in that the
esults are not impacted. 

In the analysis below, to study the dependence of the relativistic 
ffects on the stellar mass, we compare the g-mode period spectra 
alculated according to the N and GR cases for ultra-massive WD 

odels of different stellar masses at effective temperatures typical 
f the ZZ Ceti instability strip. 
Before analysing the behaviour of the periods, we first examine 

he impact of GR on the period spacing of g modes. According to
he asymptotic theory of stellar pulsations, and in the absence of
hemical gradients, the pulsation periods of the g modes with high 
adial order k (long periods) are expected to be uniformly spaced 
ith a constant period separation given by (Tassoul 1980 ; Tassoul

t al. 1990 ) 

� 

a 
� = � 0 / 

√ 

� ( � + 1) , (35) 

here 

 0 = 2 π2 

[∫ 
fluid 

N 

r 
d r 

]−1 

, (36) 

ith the integral in equation ( 36 ) calculated only in the fluid part
f the star. Fig. 12 depicts the asymptotic period spacing for the
equences of 1 . 29 , 1 . 31 , 1 . 33 , 1 . 35, and 1 . 369 M � WD models in
erms of the ef fecti ve temperature along the ZZ Ceti instability strip.

e find that �� 

a 
� , the asymptotic period spacing, is smaller for the

elativistic WD sequences compared to the Newtonian sequences. 
his is expected, since the asymptotic period spacing is inversely 
roportional to the integral of the Brunt–V ̈ais ̈al ̈a frequency divided
y the radius. Since the Brunt–V ̈ais ̈al ̈a frequency is larger for the
elativistic case (see Fig. 6 ), the integral is larger and its inverse
s smaller than in the Newtonian case. The differences of �� 

a 
� 

etween the GR and the N cases are larger for higher stellar masses,
 This is at variance with the preliminary results presented in C ́orsico, 
lthaus & Camisassa ( 2023 ), in which Newtonian equations were used for 

he g modes, with a fully relativistic WD as the background. 

d  

p  

N  

(  

K  
eaching a minimum difference of ∼0 . 6 s (which represents a relative
ariation in period spacing of ∼3 per cent ) for 1 . 29 M �, and a
aximum difference of ∼3 s (that constitutes a relative variation 

f ∼48 per cent ) for 1 . 369 M � for ef fecti ve temperatures within the
Z Ceti instability strip. 
Since there are substantial differences in the separation of g-mode 

eriods in the GR and N cases, it is natural to expect significant
ifferences in the individual pulsation periods ( � ). In the upper
anels of Figs 13 and 14 , we compare the periods of the GR and
 cases for the less massive (1 . 29 M �) and the most massive

1 . 369 M �) WD models considered in this work ( T eff ∼ 12 000
). M � = 1 . 369 M � corresponds to the maximum possible value in
MNRAS 524, 5929–5943 (2023) 
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he calculations of Althaus et al. ( 2022 ), abo v e which the models
ecome unstable with respect to GR effects. It is clear from these
gures that the periods in the relativistic case are shorter than those in

he Newtonian case, with the absolute differences becoming larger
ith increasing k. This is mainly due to the structural differences
f the equilibrium models in the GR case in relation to the N case
smaller radii and larger gravities characterizing the relativistic WD
odels, see Fig. 1 ) and, to a much lesser extent, due to the differences

n the relativistic treatment of the pulsations in comparison with the
ewtonian one. 
To quantify the impact of GR on the period spectrum, we have

lotted in the lower panel of each figure the absolute value of the
elati ve dif ferences between the GR periods and the N periods, δ =
 � GR − � N | /� GR , versus the radial order. These differences are
maller than ∼0 . 035 for the less massive model (1 . 29 M �, Fig. 13 ),
ut they become as large as ∼0 . 5 for the most massive models
1 . 369 M �, Fig. 14 ). We conclude that, for ultra-massive WDs with
asses in the range 1 . 29 ≤ M � / M � ≤ 1 . 369, the impact of GR on

he pulsations is important, resulting in changes from ∼4 per cent to
50 per cent in the values of g-mode periods. 
Another way to visualize the impact of GR on the pulsation periods

s to plot the periods for the GR and N cases in terms of stellar mass.
e display in the upper panel of Fig. 15 the periods of selected g 
odes (with radial orders k = 5 , 10 , 20 , 40, and 70) in terms of the

tellar mass for the GR and the N cases. In the lower panel, we show
he absolute value of the relati ve dif ference δ (per cent) between
he relativistic and Newtonian periods, as a function of the stellar

ass. The relati ve dif ferences in the periods e xhibit an e xponential
rowth with stellar mass, without appreciable dependence on the
adial order (see also Figs 13 and 14 ). The behaviour of δ with the
tellar mass visibly mirrors the exponential increase in the relative
ifferences between the relativistic and Newtonian stellar radii and
urface gravities, as seen in Fig. 2 . 

At first glance, the relative differences δ might seem larger than
 xpected, giv en recent work on periods in average-mass WDs by
oston et al. ( 2023 ). For the simple models considered there, it was

hown that δ ∼ z ∼ 10 −4 for a WD with M � ≈ 0 . 6 M �. Ho we ver,
onsidering their fig. 4, it is possible for stars with high central
oncentrations, such as ultra-massive WDs, that δ can be larger
han z, consistent with our present findings. To confirm this, we
lso carried out pulsational calculations on a simplified stratified
NRAS 524, 5929–5943 (2023) 
handrasekhar-type equilibrium model that mimics a ∼1 . 3 M �
ltra-massive WD, in the case of Newtonian gravity and in the post-
e wtonian approximation, follo wing the process in Boston et al.

 2023 ). These calculations and their results are presented in the
ppendix B . The comparison of the periods in both cases indicates a

elati ve dif ference of the order of 10 −2 , in complete agreement with
he results obtained here for our WD models of 1 . 29 and 1 . 31 M �
see Figs 13 and 15 ). 

It is interesting to examine how the period spacings versus periods
hange depending on whether we consider the GR case or the N
ase. We define the forward period spacing as �� = � k+ 1 − � k .
he dipole ( � = 1) forward period spacing in terms of the periods is
lotted in Figs 16 –20 for WD models with stellar masses between
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.29 and 1 . 369 M � and T eff = 12 000 K. We have adopted the same
ange in the y−axis in order to make the comparison of the results
etween the different stellar masses clearer. These figures show that, 
n general, the period spacing is larger in the N case than that in the
R case, and that this difference becomes larger as the stellar mass

ncreases. This is expected based on the behaviour of the asymptotic 
eriod spacing (see Fig. 12 ), which is indicated with horizontal 
ashed lines. 

.3 The case of the ultra-massi v e ZZ Ceti star WD J0049 −2525

he ultra-massive DA WD star WD J004917.14 −252556.81 ( T eff = 

3 020 ± 460 K and log g = 9 . 341 ± 0 . 036) is the most massive
ulsating WD known to date (Kilic et al. 2023b ). It shows only
wo periods, at ∼209 and ∼221 s, which are insufficient to find a
ingle seismological model that would give us details of its internal 
tructure. Extensi ve follo w-up time-series photometry could allo w 

isco v eries of a significant number of additional pulsation periods 
hat would help to probe its interior. Considering the ONe-core WD 

volutionary models of Althaus et al. ( 2022 ), WD J0049 −2525
as M � = 1 . 283 ± 0 . 008 M � in the Newtonian gravity, or M � =
 . 279 ± 0 . 007 M � if we adopt the GR treatment. This heavyweight
Z Ceti, in principle, could be considered as an ideal target to explore

he relativistic effects on ultra-massive WD pulsations. However, the 
ifference between the relativistic and Newtonian masses of this 
arget is tiny. A difference of only 0 . 004 M � is even smaller than the
ncertainties in the mass estimates. This small difference is due to the
tar being just slightly below the lower mass limit for the relativistic
ffects to be important. 4 

Fig. 15 (see also Fig. 16 ) demonstrates that the effects of the GR
n the g-mode periods of WD J0049 −2525 are less than ∼1 per cent .
lthough extremely important for being the most massive pulsating 
D star known, WD J0049 −2525 is not massive enough for the

xploration of the GR effects on WD pulsations. We conclude that,
o be able to study the effects of GR on WD pulsations, we have to
ait for the disco v ery and monitoring of even more massive pulsating
Ds, especially the ones with M � � 1 . 33 M �. 

.4 Prospects for finding pulsating WDs where GR effects are 
ignificant 

ig. 21 shows the masses and ef fecti ve temperatures for high-
robability ( P WD ≥ 0 . 9) WD candidates with M � ≥ 1 . 3 M � in the
aia EDR3 WD sample from Gentile Fusillo et al. ( 2021 ) assuming
O cores. Here, we limit the sample to the temperature range near the
Z Ceti instability strip. The blue and red lines show the boundaries
f the instability strip from Vincent et al. ( 2020 ) extrapolated to
igher masses. There are 78 objects in this sample, including 7
pectroscopically confirmed DA WDs (labelled in the figure) and 6 
agnetic or DC WDs. Kilic et al. ( 2023a ) found that only 48 per cent

f the M � ≈ 1 . 3 M � WDs within 100 pc are DA WDs, with the rest
eing strongly magnetic (40 per cent of the sample) or WDs with
nusual atmospheric compositions (hot DQ, DBA, DC, etc.). Hence, 
ollow-up spectroscopy is required to identify the DA WDs in this
ample. 

Kilic et al. ( 2023a ) presented time-series photometry for the five
A WDs cooler than 13 000 K in Fig. 21 . They did not detect any

ignificant variations in four of the targets, and their observations 
ere inconclusive for J0959 −1828. Nevertheless, there are a number 
f relati vistic ultra-massi ve WD candidates that may fall within
he ZZ Ceti instability strip, and therefore may exhibit pulsations. 
he masses shown here are based on the CO-core evolutionary 
odels; for ONe cores, the masses would be lower on average by
 . 04 −0 . 05 M �. Even then, there are nine candidates with M � > 1 . 35
MNRAS 524, 5929–5943 (2023) 
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M

Figure 21. Masses and ef fecti ve temperatures for high-probability WD 

candidates with M � ≥ 1 . 3 M � in the Gaia EDR3 WD sample from Gentile 
Fusillo et al. ( 2021 ) assuming CO cores. For ONe cores, the masses would 
be lower on average by 0 . 04 −0 . 05 M �. The blue and red lines show the 
empirical boundaries of the ZZ Ceti instability strip from Vincent et al. ( 2020 ) 
extrapolated to higher masses. Blue and red dots show the spectroscopically 
confirmed DA and DC/magnetic WDs, respectively. 
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nd up to 1 . 39 M � (assuming a CO core) near the instability strip.
f confirmed, such targets would be prime examples of objects
here GR effects would have a significant impact on their pulsation
roperties. 
Unfortunately, the observational errors in temperatures and masses

f these targets based on Gaia photometry and parallaxes (Gentile
usillo et al. 2021 ) are too large to ef fecti vely identify the best

argets for follow-up. For example, 64 of the 78 objects shown here
ave temperature errors larger than 2000 K, roughly the width of
he instability strip, and 62 have errors in mass that are larger than
 . 1 M �. Hence, further progress on understanding the GR effects on
D pulsation will require spectroscopic and time-series observations

f a relatively large sample of candidates to identify genuine pulsating
ltra-massive WDs with M � � 1 . 33 M �. In addition, the median G -
and magnitude for these 78 objects is 20.25 mag. Hence, 4–8 m
lass telescopes would be needed to confirm pulsating DA WDs in
his sample. 

 SUMMARY  A N D  C O N C L U S I O N S  

n this paper, we have assessed for the first time the impact of GR
n the g-mode period spectra of ultra-massive ZZ Ceti stars. To this
nd, we pulsationally analysed fully evolutionary ONe-core ultra-
assive WD models with masses from 1.29 to 1 . 369 M � computed

n the frame of GR (Althaus et al. 2022 ). We employed the LPCODE

nd LP-PUL evolutionary and pulsation codes, respectively, adapted
or relativistic calculations. In particular, for the pulsation analysis,
e considered the relativistic Cowling approximation. Our study is

onsistent with Boston et al. ( 2023 ), considering the high central
ompactness of the stars studied here. The study of pulsating ultra-
assive WDs in the context of GR is timely considering the increas-
NRAS 524, 5929–5943 (2023) 
ng rate of disco v ery of very high mass objects (e.g. Hollands et al.
020 ; Kilic et al. 2020 , 2021 , 2023a ; Caiazzo et al. 2021 ; Torres et al.
022 ), the disco v ery of the ZZ Ceti WD J004917.14 −252556.81 (the
ost massive pulsating WD currently known; Kilic et al. 2023b ),

nd the possibility of finding even more massive pulsating objects
n the near future. This is particularly rele v ant in view of the space-
ased surv e ys like TESS and ULTRASAT and wide-field ground-
ased surv e ys like the LSST and BlackGEM. 
We find that the Brunt–V ̈ais ̈al ̈a and Lamb frequencies are larger

or the relativistic case compared to the Newtonian case, as a result
f relativistic models having smaller radii and higher gravities. This
as the important consequence that the typical separation between
onsecutive g-mode periods is smaller in the relativistic case than
hat in the Newtonian computations, with percentage differences of
p to 48 per cent in the case of the most massive model (1 . 369 M �).
e assessed the dipole period spectrum of g modes of our ultra-
assive WD models for the Newtonian and the relativistic cases,

nd found that the periods in the GR case are shorter than those in
he Newtonian computations. In particular, for the less massive model
1 . 29 M �), these relative differences are smaller than ∼0 . 035, but
he variations reach values as large as ∼0 . 5 for the most massive
odel (1 . 369 M �). 
We conclude that, for ultra-massive DA WD models with masses in

he range that we have considered in this paper (1 . 29 ≤ M � / M � ≤
 . 369) and ef fecti ve temperatures typical of the ZZ Ceti instability
trip, GR does matter in computing the adiabatic g-mode pulsations,
esulting in periods that are between ∼4 and ∼50 per cent shorter,
epending on the stellar mass, when a relativistic treatment is adopted
nstead of a Newtonian one. This suggests that the effects of GR on
he structure and pulsations of WDs with masses �1 . 29 M � cannot
e ignored in asteroseismological analysis of ultra-massive ZZ Ceti
tars and likely other classes of pulsating WDs. 
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PPENDI X  A :  RELATIVISTIC  EXPRESSIO N  

O R  T H E  B RU N T – V  ̈A I S  ̈A L  ̈A  FREQUENCY  IN  

H E  ‘MODI FI ED  L E D O U X ’  PRESCRI PTIO N  

e start from the relativistic expression for the Brunt–V ̈ais ̈al ̈a
requency, obtained according to its definition (equation 18 ). This 
xpression can be derived by considering slight buoyant perturbations 
f a fluid packet within the stellar medium, as detailed in Boston
 2022 ). In the GR case, N 

2 is given by 

 

2 = − c 2 

2 
ν ′ e −λ

[
1 

ρ + P /c 2 

(
d ρ

d r 

)
− 1 

� 1 P 

(
d P 

d r 

)]
, (A1) 

hich reduces to the Newtonian result in the limit c → ∞ . In what
ollo ws, we will deri v e e xpressions for the first and second members
nside the brackets of equation ( A1 ). In the Newtonian case, if stellar
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lasma is composed by M atomic species with fractional abundances
 i , the equation of state can be written as 

 = P ( ρ, T , { X i } ) , (A2) 

here i = 1 , · · · , M − 1, and 
∑ M−1 

i= 1 X i + X M 

= 1. In the relativis-
ic case, we have, instead, 

 = P ( n, T , { X i } ) , (A3) 

here n is the baryonic number density. Following Brassard et al.
 1991 ), we can differentiate P from equation ( A3 ) and write 

 ln P = χn d ln n + χT d ln T + 

M−1 ∑ 

i= 1 

χX i d ln X i , (A4) 

here χT , χn , and χX i are given by equation ( 21 ). Now, from
quation ( A4 ) we have 

d ln n 

d ln P 

= 

1 

χn 

− χT 

χn 

∇ − 1 

χn 

M−1 ∑ 

i= 1 

χX i 

d ln X i 

d ln P 

. (A5) 

The relativistic adiabatic exponent, � 1 , is defined as 

 1 = 

(
∂ ln P 

∂ ln n 

)
ad 

. (A6) 

ollowing Kippenhahn & Weigert ( 1990 , equations 6.6 and 13.24),
e can write 

 1 = 

1 

α − δ∇ 

, (A7) 

here 

= 

(
d ln ρ

d ln P 

)
T 

, δ = −
(

d ln ρ

d ln T 

)
P 

. (A8) 

rom the definition of χT and χn (equation 21 ), and using the property
f the partial deri v ati ves ( ∂ f /∂ y) x = −( ∂ f /∂ x) y · ( ∂ x/∂ y) f , we
ave 

= 

1 

χn 

, δ = 

χT 

χn 

, (A9) 

o that � 1 can be written as 

1 

� 1 
= 

( 1 − χT ∇ ad ) 

χn 

. (A10) 

The first law of thermodynamics in GR can be written (equa-
ion 2.12 of Thorne 1967 , converted to standard, non-geometrized
nits) as 

 ρ = 

[
ρ + P /c 2 

n 

]
d n + 

T 

c 2 
n d s + 

∑ 

k 

μk n d X k , (A11) 

here T , s, and μk are the temperature, the entropy per baryon, and
he nuclear chemical potential of the species k, respectively. 

If we now assume isentropic changes (d s = 0) and suppose that
he abundances of the nuclear species do not change (d X k = 0;
NRAS 524, 5929–5943 (2023) 
quation 2.14 of Thorne 1967 ), then by differentiating with respect
o r , we finally have 

d ρ

d r 
= 

[
ρ + P /c 2 

n 

]
d n 

d r 
. (A12) 

quation ( A12 ) can be written as 

1 

ρ + P /c 2 

(
d ρ

d r 

)
= 

1 

n 

d n 

d r 
. (A13) 

ubstituting equation ( A13 ) in equation ( A1 ), using the static TOV
Tolman-Oppenheimer-Volkoff) equation of GR (Oppenheimer &
olkoff 1939 ; Tolman 1939 ), 

d P 

d r 
= −1 

2 

(
ρ + 

P 

c 2 

)
c 2 ν ′ , (A14) 

nd employing equations ( A5 ) and ( A10 ), we obtain 

 

2 = 

(
1 

2 
c 2 ν ′ 

)2 

e −λ

(
ρ + P /c 2 

P 

)
χT 

χn 

×
[ 

∇ ad − ∇ − 1 

χT 

M−1 ∑ 

i= 1 

χX i 

d ln Xi 

d ln P 

] 

, (A15) 

here the last term inside the brackets is the Ledoux term B 

equation 20 ). Thus, we finally obtain 

 

2 = 

(
1 

2 
c 2 ν ′ 

)2 

e −λ

(
ρ + P /c 2 

P 

)
χT 

χn 

[ ∇ ad − ∇ + B ] . (A16) 

PPENDI X  B:  VA LI DATI ON  WI TH  A  TOY  

O D E L  BA SED  O N  C H A N D R A S E K H A R ’ S  

O D E L S  

s validation of the results presented in this paper, in particular the
ize of the relati ve dif ference in the periods, we have carried out
ulsation calculations on a toy model based on Chandrasekhar’s
odels, with a stellar mass M � ∼ 1 . 3 M �. This model has a

old degenerate-electron equation of state featuring a near-surface
hemical transition from μe = 2 to μe = 1, simulating a surface H
ayer. Thus, this simple model mimics the structure of a stratified
ealistic ultra-massiv e WD model. F ollowing the post-Newtonian
ethod described in Boston et al. ( 2023 ), we have compared the

ourth-order non-radial Newtonian pulsations to the non-radial GR
ulsations for this toy model for several g, f , and p modes with
ow radial orders k for harmonic degrees � = 1 , 2, and 3. We
how the results in Table B1 . The relative differences we obtain
or g modes are, on average, ∼2 . 65 × 10 −2 (column 4), which is
onsistent with the results shown in Figs 13 and 15 for the cases of
ltra-massive WD models with M � = 1 . 29 M � and M � = 1 . 31 M �,
espectively. 
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Table B1. Periods for se veral lo w-order p, f , and g modes corresponding 
to the Newtonian gravity computations (column 2) and the GR computations 
(column 3) for a stratified degenerate-electron gas model, both with M � = 

1 . 299 66 M �. The Newtonian model uses y 0 = 6 . 385, with z = 6 . 6012 ×
10 −4 , while the GR model uses y 0 = 6 . 779, with z = 6 . 3047 × 10 −4 . 
Column 3 gives the relative difference, which is commensurate with those in 
Fig. 13 . 

Newtonian Post-Newtonian 
Mode �,k � (s) � (s) Rel. diff. 

p 1 , 1 1.049 5784 0.978 2581 1 . 52 × 10 −3 

g 1 , 1 16.267 5050 14.786 5834 2 . 66 × 10 −2 

g 1 , 2 35.751 5552 32.493 2485 2 . 67 × 10 −2 

g 1 , 3 54.426 4093 49.468 6549 2 . 67 × 10 −2 

g 1 , 4 72.917 4383 66.277 8687 2 . 66 × 10 −2 

g 1 , 5 91.335 5203 83.021 1550 2 . 66 × 10 −2 

g 1 , 6 109.716 9819 99.731 3589 2 . 66 × 10 −2 

g 1 , 7 128.077 3819 116.422 5439 2 . 66 × 10 −2 

g 1 , 8 146.424 5279 133.101 7651 2 . 65 × 10 −2 

f 2 1.290 9440 1.191 5768 1 . 12 × 10 −2 

g 2 , 1 9.416 4937 8.560 7991 2 . 64 × 10 −2 

g 2 , 2 20.682 5679 18.800 0960 2 . 66 × 10 −2 

g 2 , 3 31.477 1109 28.612 8454 2 . 66 × 10 −2 

g 2 , 4 42.164 2251 38.328 3552 2 . 65 × 10 −2 

g 2 , 5 52.808 3359 48.004 9281 2 . 65 × 10 −2 

g 2 , 6 63.430 6072 57.661 7194 2 . 65 × 10 −2 

g 2 , 7 74.040 1429 67.306 9695 2 . 65 × 10 −2 

g 2 , 8 84.641 5378 76.944 8380 2 . 65 × 10 −2 

f 3 1.079 6099 1.000 3529 7 . 39 × 10 −3 

g 3 , 1 6.682 8617 6.077 1126 2 . 62 × 10 −2 

g 3 , 2 14.664 7687 13.332 3883 2 . 64 × 10 −2 

g 3 , 3 22.308 7624 20.281 5701 2 . 64 × 10 −2 

g 3 , 4 29.875 4567 27.160 6785 2 . 64 × 10 −2 

g 3 , 5 37.410 8454 34.011 3796 2 . 64 × 10 −2 

g 3 , 6 44.930 0978 40.847 4210 2 . 64 × 10 −2 

g 3 , 7 52.439 7798 47.674 7566 2 . 64 × 10 −2 

g 3 , 8 59.943 2319 54.496 4175 2 . 64 × 10 −2 
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