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ABSTRACT
As planets grow, the exchange of angular momentum with the gaseous component of the
protoplanetary disc produces a net torque resulting in a variation of the semimajor axis of
the planet. For low-mass planets not able to open a gap in the gaseous disc, this regime is
known as type I migration. Pioneer works studied this mechanism in isothermal discs finding
fast inward type I migration rates that were unable to reproduce the observed properties of
extrasolar planets. In the last years, several improvements have been made in order to extend
the study of type I migration rates to non-isothermal discs. Moreover, it was recently shown
that if the planet’s luminosity due to solid accretion is taken into account, inward migration
could be slowed down and even reversed. In this work, we study the planet formation process
incorporating, and comparing, updated type I migration rates for non-isothermal discs and the
role of planet’s luminosity over such rates. We find that the latter can have important effects
on planetary evolution, producing a significant outward migration for the growing planets.

Key words: planets and satellites: formation – planet-disc interactions – protoplanetary discs.

1 INTRODUCTION

In the classical core accretion mechanism (Safronov 1969; Mizuno
1980; Stevenson 1982; Bodenheimer & Pollack 1986; Green-
zweig & Lissauer 1992), the formation of both terrestrial and giant
planets occurs through subsequent stages. Immediately after the
collapse of the primordial gas cloud, a circumstellar disc is formed.
The dust of the protoplanetary disc quickly settles into the disc mid-
plane, where it coagulates to form larger solid structures known as
planetesimals. Then, planetesimals coaggregate to form planetary
embryos, which can then grow to form planets.

At the moment, there are two main scenarios for planetesimal
formation: collisional growth models, wherein a gradual growth by
continuous collisions is invoked; or gravoturbulent models, wherein
the gravitational collapse of dust accumulation is invoked (see
Blum 2018, and references therein for an update review). The first
scenario predicts that most of the dust particles coagulate to form
planetesimals, which continue growing by mutual accretion until
planetary embryos of about the mass of the Moon form. At this stage,
these are the only bodies that continue growing by the accretion of
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planetesimals in a process often called oligarchic growth regime
(Ida & Makino 1993; Kokubo & Ida 1998; Ormel, Dullemond &
Spaans 2010). In the second scenario, dust particles are concentrated
in high-pressure regions in sufficiently high amount to be able to
trigger the streaming instability. In this case, the planetesimals are
directly formed by the gravitational collapse of the dust aggregates
(Youdin & Goodman 2005; Johansen et al. 2007).

Once planetesimals are formed they can efficiently accrete small
particles and quickly form massive solid embryos (Johansen &
Lacerda 2010; Ormel & Klahr 2010; Lambrechts & Johansen 2012;
Lambrechts, Johansen & Morbidelli 2014; Chambers 2016). There
are two necessary conditions for this process: massive planetesimals
combined to a high concentration of small particles.

Dust particles and small planetesimals experience a fast radial-
drift. This is because the gaseous component of the disc rotates
at a sub-Keplerian velocity, while dust and planetesimals orbit at
Keplerian velocities. This difference causes a drag force on the
solid bodies, which results in a loss of angular momentum. As
bodies grow and become planetary embryos, the drag force becomes
negligible. However, planetary embryos are able to locally modify
the gas density structure. This effect leads to an exchange of angular
momentum, which results in a net torque that makes the planets
migrate within the disc. Different regimes of migration have been
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studied during the last decades, starting with the pioneer works of
Lin & Papaloizou (1986) and Ward (1997). Planet–disc interactions
are key in the orbital evolution of forming planets, leading to
potentially large variations in their semi-major axis. For planets
not massive enough to open a gap in the gaseous disc, the migration
regime is usually known as type I migration. Early models of type I
migration were developed for isothermal discs (Tanaka, Takeuchi &
Ward 2002). Such models found very high inward type I migration
rates, so planets migrate too fast towards the central star. Therefore,
in order to reproduce observations, many authors had to reduce by
up to a factor of 0.001 these previous migration rates (Ida & Lin
2004; Alibert et al. 2005; Miguel, Guilera & Brunini 2011).

Numerical studies including further physical processes – mag-
netic fields (Guilet, Baruteau & Papaloizou 2013) and non-
isothermal protoplanetary discs for instance – have shown that
type I migration can be slowed down, and even reversed. In
hydrodynamical simulations of non-isothermal discs – in 2D and 3D
– it was found that the outward type I migration strongly depends
not only on the planetary mass and semi-major axis, but also on
the disc structure and thermodynamics (Paardekooper & Mellema
2006; Baruteau & Masset 2008; Paardekooper & Papaloizou 2008;
Kley, Bitsch & Klahr 2009). Later, Masset & Casoli (2010) and
Paardekooper et al. (2010); Paardekooper, Baruteau & Kley (2011)
derived semi-analytical prescriptions for type I migration rates in
non-isothermal discs, which can be incorporated in planet formation
models. In fact, the migration rates derived by Paardekooper et al.
(2010, 2011) are the most often employed in planet formation
models that consider non-isothermal discs (Fortier et al. 2013;
Alibert et al. 2013; Coleman & Nelson 2014; Dittkrist et al.
2014; Bitsch et al. 2015a; Bitsch, Lambrechts & Johansen 2015b;
Coleman & Nelson 2016; Guilera, Miller Bertolami & Ronco 2017;
Izidoro et al. 2017; Kobayashi & Tanaka 2018; Ndugu, Bitsch &
Jurua 2018). It is worth noting that the type I migration rate
prescriptions given by Masset & Casoli (2010) and Paardekooper
et al. (2010, 2011) were derived from the results of 2D hydro-
dynamical simulations. Although they account for most of the
mechanisms that contribute to the total torque over the planet,
these prescriptions do not match the more physical 3D radiative
hydrodynamic simulations with enough accuracy (Kley et al. 2009;
Bitsch & Kley 2011).

More recently, however, Jiménez & Masset (2017) updated the
torque formula of Masset & Casoli (2010) by means of 3D numerical
simulations. This resulted in an improvement in the derived type I
migration prescriptions for both the Lindblad and the corotation
torques with respect to the aforementioned works. These new type
I migration recipes were compared with the results from the 3D
radiative hydrodynamical simulations from Bitsch & Kley (2011)
and Lega et al. (2015), showing good agreement.

Using 3D radiative hydrodynamical simulations, Lega et al.
(2014) found that in the proximity to a low-mass planet, the gas
is cooler and denser than it would be if it behaved adiabatically.
Such effect is asymmetric, generating an additional negative cold
torque, which generates an inward migration. Additionally, Benı́tez-
Llambay et al. (2015) found that the heat released by a planet due
to accretion of solids is diffused in the nearby disc, generating
two asymmetric hot and low-density lobes. This effect produces a
heating torque that can become positive, depending on the amount
of heat released by the planet. Then, Chrenko, Brož & Lambrechts
(2017) also performed radiative hydrodynamical simulations con-
sidering growing planets immersed in the disc. They also found
planet outward migration if the heat released into the disc by
the planets due to the accretion of solids is taken into account.

However, neither of these works derived analytical prescriptions
that reproduced such phenomena.

It is important to note that the effects found by Lega et al.
(2014) and Benı́tez-Llambay et al. (2015) were not considered
by Jiménez & Masset (2017) for the derivation of their migration
recipes. However, these two phenomena were studied analytically
in a novel work by Masset (2017), who proposed a semi-analytical
prescription for the thermal torque, defined by the author as the sum
of the two aforementioned effects. This torque can be incorporated
in planet formation models.

In this work, we update our planet formation model PLANETALP
(Guilera et al. 2017; Ronco, Guilera & de Elı́a 2017) by imple-
menting the type I migration rates derived by Jiménez & Masset
(2017), along with the thermal torque derived by Masset (2017).
We aim to study the impact of these new prescriptions on planet
formation. In doing so, we pay particular attention to the thermal
torque. This work is organized in the following way: in Section 2,
we describe our planet formation model and the improvements to
the type I migration rates. Readers not interested in the technical
details of the simulations can directly jump to Section 3, where we
present the migration maps obtained with these new prescriptions
and the resulting impact on planet formation. Finally, we discuss
our findings and draw our conclusions in Section 4.

2 DESCRIPTION OF PLANETALP

In a series of previous works (Guilera, Brunini & Benvenuto 2010;
Guilera et al. 2014, 2017; Guilera & Sándor 2017; Ronco et al.
2017), we developed a planet formation code called PLANETALP.
It models the formation of a planetary system immersed in a
protoplanetary disc that evolves in time. The protoplanetary disc
is modelled by two components: a gaseous and a solid one. Planets
immersed in the disc start to grow by the accretion of solid
material. Once they are massive enough, they are also able to accrete
the surrounding gas. The growing planets are allowed to migrate
under type I and type II migration along the disc. Even though
PLANETALP allow us to calculate the simultaneous formation of
several planets, in this work we will only calculate the formation of
only one planet per disc.

Below, we describe the most relevant features of PLANETALP,
especially the new type I migrations rates incorporated in this work.

2.1 The gaseous disc

In the latest version of PLANETAcLP (Guilera et al. 2017), the
disc gaseous component is modelled by a standard 1D + 1D
viscous accretion disc. We consider an axisymmetric, irradiated
disc in hydrostatic equilibrium. To calculate the vertical structure
of the disc, we solve for each radial bin the structure equations
(Papaloizou & Terquem 1999; Alibert et al. 2005; Migaszewski
2015)

∂P

∂z
= −ρ�2z,

∂F

∂z
= 9

4
ρν�2, (1)

∂T

∂z
= ∇ T

P

∂P

∂z
,

where P, ρ, F, T, and z represent the pressure, density, radiative heat
flux, temperature, and vertical coordinate of the disc, respectively.
We note � the Keplerian frequency at a given radial distance and
ν = αc2

s /� the viscosity (Shakura & Sunyaev 1973), with α a free
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5692 O. M. Guilera et al.

parameter (we varied α between 10−4 and 10−2) and c2
s = P /ρ

the square of the local isothermal sound speed. In our model,
convection sets in when the standard Schwarzschild criterion is
fulfilled. In convective regions, the vertical temperature gradient
∇ = dlog T/dlog P is calculated considering the mixing length
theory, following the prescription of Kippenhahn, Weigert & Weiss
(2012); while in purely radiative regions, the temperature gradient
∇ rad is given by ∇ rad = 3κρF/16σ�2zT4, where σ is the Stefan–
Boltzmann constant and κ is the local Rosseland mean opacity
(Bell & Lin 1994). We adopt the equation of state of an ideal
diatomic gas P = ρkT/μmH, where k is the Boltzmann constant,
μ the mean molecular weight, mH the mass of the hydrogen atom,
and ∇ad the adiabatic gradient. Since the main component of the gas
disc is molecular hydrogen, it is reasonable to assume as in previous
works that μ = 2 and ∇ad = 2/7.

To solve the system of equations (1), we consider that the
boundary conditions at the surface of the disc H as in Papaloizou &
Terquem (1999), Alibert et al. (2005) and Migaszewski (2015).
Namely, Ps = P(z = H), Fs = F(z = H), and Ts = T(z = H). These
quantities are given by:

Ps = �2Hτab

κs

,

Fs = 3Ṁst�
2

8π
, (2)

0 = 2σ
(
T 4

s + T 4
irr − T 4

b

) − 9α�k
(
T 4

s + T 4
irr

)1/4

8κsμmH
− Fs,

where τ ab = 10−2 is the optical depth, Tb = 10 K is the back-
ground temperature, and Ṁst is the equilibrium accretion rate. The
temperature associated with the stellar irradiation is given by:

Tirr = T�

[
2

3π

(
R�

R

)3

+ 1

2

(
R�

R

)2(
H

R

)(
d log H

d log R
− 1

)]0.5

, (3)

where R is the radial coordinate, and dlog H/dlog R = 9/7 (Chiang &
Goldreich 1997). We note that here we are not considering the self-
shadowing of the disc (Baillié, Charnoz & Pantin 2015, 2016; Bitsch
et al. 2015a; Migaszewski 2015). The central object is assumed to
be a 1 M� protostar with R� = 2 R� and T� = 4000 K (Baraffe
et al. 2015). We note that the stellar luminosity does not evolve in
time in our model. In addition to the surface boundary conditions,
in the mid-plane of the disc, the heat flux should vanish: F(z = 0) =
F0 = 0. The system of equations (2) is solved by a multidimensional
Newton—Raphson algorithm. The vertical structure of the disc is
solved following Alibert et al. (2005) and Migaszewski (2015),
using a shooting method with a Runge–Kutta–Fehlberg integrator.

Then, the time evolution of the gas surface density �g is calcu-
lated solving the classical diffusion equation of Pringle (1981):

∂�g

∂t
= 3

R

∂

∂R

[
R1/2 ∂

∂R

(
ν̄�gR1/2

)]
, (4)

where ν̄ is the mean viscosity. Therefore, to solve equation (4),
we need to know the radial profile of ν̄ at each time-step as a
function of the corresponding �g, i.e. ν̄ = ν̄(�g, R). To do this, we
solve the vertical structure of the disc only at the beginning of the
simulation, for a fixed value of the α-parameter and varying Ṁst

from 10−16 M� yr−1 to 10−4 M� yr−1 using a dense grid between
these values. For each Ṁst – solving the vertical structure of the disc
– we calculate the radial profiles of �g and ν̄ assuming that at each

radial bin the disc is in a steady state (i.e. Ṁst = 3πν�g). Then, from
the initial gas surface density radial profile, we interpolate at each
radial bin the corresponding value of Ṁst. With this information,
we can then interpolate the value of the corresponding mean
viscosity at each radial bin. Given the initial gas surface density
and mean viscosity radial profiles, we solve for the first time-
step the diffusion equation, obtaining a new radial profile for the
gas surface density, and repeating the aforementioned mechanism.
Finally, we note that equation (4) is solved using an implicit
Crank–Nicholson method considering zero torques as boundary
conditions, which is equivalent to consider zero density as boundary
condition. We also remark that the radial profiles time evolution
of the other relevant thermodynamic quantities at the disc mid-
plane (temperature, pressure, opacities, etc.), needed to calculate
the planet migration rates, are calculated in the same way as the
mean viscosity radial profiles (see the extended version on the arXiv
of Migaszewski 2015, for details).

Throughout this work, the initial surface density of the disc is
assumed to be equal to (Andrews et al. 2010):

�g(R) = �0
g

(
R

Rc

)−b

e−(R/Rc)2−b

, (5)

where Rc = 39 au is the characteristic disc radius, b = 1, and �0
g is

a normalization constant. The latter is a function of the disc mass
Md. In all our simulations, the characteristic disc radius and the
exponent b are kept fixed. For our fiducial model, we assume a disc
with a mass of 0.05 M�, and we adopt a value of α = 10−3 for
the Shakura–Sunyaev α-viscosity parameter (Shakura & Sunyaev
1973). As we are interested in the early stages of planet formation,
we only analyse the first million years of the disc evolution.

2.2 The solid component of the disc

In PLANETALP, the solid component of the disc is characterized by
a particle population (planetesimals or smaller particles as pebbles),
represented by a solid surface density. The initial solid surface
density is given by

�p(R) = z0ηice�g(R). (6)

Here, z0 is the initial dust to gas ratio (in this work, we assume z0 =
0.0153, the initial solar metallicity Lodders, Palme & Gail 2009),
and ηice represents the sublimation of volatiles inside the ice-line.
ηice is equal to 1 and 1/3 outside and inside the ice-line, respectively.
In our model, the ice-line is located at the distance to the central
star where the initial temperature at the disc mid-plane drops to
170 K (for the fiducial disc, it is located at ∼3 au). We note that
the ice-line does not evolve in time, and it is only used to define the
initial solid surface density (which decreases as we move far away
from the central star).

This population evolves according to the drift due to the nebular
gas considering the Epstein, Stokes, and quadratic regimes (Rafikov
2004; Chambers 2008), and according to the accretion by the
embryos (see next section). In general, small particles as pebbles
are always in the Epstein regime along the disc; small planetesimals
are either in the Stokes or quadratic regimes; and big planetesimals
(�10 km) are in the quadratic regime along the disc. For each
radial bin, the drift velocities of the solid particles are calculated
corresponding to the drag regime. In the case of planetesimals,
we also take into account ejection/dispersion processes (see Ronco
et al. 2017, for the approach employed).
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Thermal torque effects on migration 5693

As in previous works, we take the particle eccentricities and
inclinations out of equilibrium considering the planet gravitational
excitations (Ohtsuki, Stewart & Ida 2002), and the damping due
to the nebular gas drag (Rafikov 2004; Chambers 2008). The
numerical treatment of these phenomena is described in detail
in Guilera et al. (2014) and Guilera & Sándor (2017). Although
PLANETALP allows us to model the collisional evolution of the
particle population (Guilera et al. 2014; San Sebastián, Guilera &
Parisi 2018), due to its high computational cost, this effect is not
taken into account in the present work.

Finally, the time evolution of the solid surface density is calcu-
lated by using the following continuity equation:

∂

∂t

[
�p(R, rpj

)
] + 1

R

∂

∂R

[
R vmig(R, rpj

) �p(R, rpj
)
]

= �̇tot
p (R, rpj

), (7)

where �̇tot
p (R, rpj

) represents the sink terms due to the accretion
(and ejection/dispersion in the case of planetesimals) by the planets
(see Ronco et al. 2017, for numerical details) and vmig(R, rpj

) is
the particle drift velocity. The rpj

dependence emphasizes that
equation (7) is solved independently for each particle size for a given
planetesimal distribution. In this case, the total planetesimal surface
density is given by: �p(R) = ∑

j �p(R, rpj
). For simplicity, we

adopt a single size distribution in this work and we solve equation (7)
using an implicit Donor cell algorithm considering zero density as
boundary conditions.

2.3 Growth of the planets

In PLANETALP, planets grow by the continuous and simultaneous
accretion of solid material and the surrounding gas (see Ronco et al.
2017, for details).

On the one hand, in the case of planetesimals (solid particles with
Stokes number1 greater than unity), the solid cores of the planets
grow according to the accretion rate for oligarchic growth derived
by Inaba et al. (2001),

dMC

dt

∣∣∣∣
psimal

= �p (RP) R2
H Pcoll �P, (8)

where MC is the mass of the core, �p(RP) the surface density of
solids at the planet location RP, RH the planet Hill radius, Pcoll

the collision probability, and �P the Keplerian frequency. Pcoll

is a function of the planet capture radius, considering the drag
force experienced by the planetesimals when entering the planetary
envelope following Inaba & Ikoma (2003), the planet Hill radius,
and the relative velocity between the planetesimals and the planet
(assuming a coplanar and circular orbit for the latter). There are three
regimes for Pcoll depending on whether the relative velocities are
low, intermediate, or high. This, in turn, depends on the planetesimal
eccentricities and inclinations (see Guilera et al. 2010, 2014, for
details). In general, small planetesimals (rp � 1 km) are in the low
relative velocity regime, while big planetesimals (rp � 10 km)
are in high relative velocity regime. Thus, small planetesimals
have greater Pcoll and so, greater accretion rates (typically of
the order of 10−5 M⊕ yr−1–10−4 M⊕ yr−1) with respect to big
planetesimals (which typically have accretion rates of the order

1The Stokes number of a particle is defined as St = � tstop (Stokes 1851;
Whipple 1972; Weidenschilling 1977), being tstop the stopping time that
depends of the drag regime (see Guilera et al. 2014, for the adopted stopping
times).

of 10−6 M⊕ yr−1).2 The equation (8) is radially integrated along the
planetesimal feeding zone, which extends 4.5 RH at each side of
the planet location, using a normalization function (Guilera et al.
2014). We do not consider some potentially relevant phenomena that
could change the planetesimals accretion rates, such as planetesimal
resonant trapping or gap opening in the planetesimal disc (Tanaka &
Ida 1999; Shiraishi & Ida 2008). These phenomena are difficult to
incorporate without considering N-body interactions between the
planets and the planetesimals.

On the other hand, if the solid particles have Stokes numbers
St lower or equal to unity, we consider them as pebbles, and the
accretion rates are given by Lambrechts et al. (2014):

dMC

dt

∣∣∣∣
pebbles

=
⎧⎨
⎩

2β �p(RP) R2
H �P, if 0.1 ≤ St < 1,

2β
(

St

0.1

)2/3
�p(RP) R2

H �P, if St < 0.1,

(9)

where β = min(1, RH/Hp) takes into account a reduction in the
pebble accretion rates if the scale-height of the pebbles (Hp)
becomes greater than the planet Hill radius. This scale-height is
defined as Hp = Hg

√
α/(α + St ) (Youdin & Lithwick 2007), where

Hg is the scale-height of the gaseous disc. Equation (9) is radially
integrated along the pebble feeding zone, which extends 1 RH at
each side of the planet location (Ormel & Klahr 2010). While
planetesimals can be accreted by a fraction of the Hill sphere of
the planet, pebbles can be accreted by the full Hill sphere producing
hence higher accretion rates. We do not take into account the pebble
isolation mass (Lambrechts et al. 2014; Bitsch et al. 2018) or the
possible pebble ablation in the planet envelope (Brouwers, Vazan &
Ormel 2018). The first phenomenon stops the accretion of pebbles
at high planetary masses, while the second could strongly inhibit
the formation of massive cores by pebble accretion.

Regarding the gas accretion, we follow the approach used in
Ronco et al. (2017) and Guilera et al. (2017). We consider that if
the planet core mass reaches a critical mass equal to:

Mcrit = 10

(
ṀC

10−6 M⊕yr−1

)0.25

M⊕, (10)

where ṀC is the solid accretion rate, then the gas accretion rate on
to the planet is given by:

dMg

dt
= min[ṀKH, Ṁdisc, ṀGP], (11)

where ṀKH = MP/τg, with MP being the total mass of the planet,
and τg = 8.35 × 1010 (MP/M⊕)−3.65 yr the characteristic Kelvin–
Helmholtz growth time-scale of the envelope (Ronco et al. 2017).
Additionally, the maximum rate at which the gas can be delivered
by the disc on to the planet is equal to:

Ṁdisc = 3πν�g,P, (12)

where �g, P is the local gas surface density (hereafter by local we
mean at the planet location). Finally, if the planet is able to open a
gap in the gaseous disc (Tanigawa & Ikoma 2007), the gas accretion
on to the planet ṀGP reads as follows:

ṀGP = Ȧ�acc, (13)

2See Guilera et al. (2010, 2011, 2014) and Fortier, Benvenuto & Brunini
(2007); Fortier et al. (2013) for classical planetesimal accretion rates in the
framework of the oligarchic growth depending on planetesimal sizes and
disc masses.
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5694 O. M. Guilera et al.

where

Ȧ = 0.29

(
Hg,P

RP

)−2 (
MP

M�

)4/3

R2
P�P (14)

with �acc = �(x = 2RH) and,

�(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�g,P exp

[
−

(x

l

)−3
]

if x > xm,

�g,P exp

[
− 1

2

(
x

Hg,P
− 5

4

xm

Hg,P

)2

+ 1

32

(
xm

Hg,P

)2

−
(xm

l

)−3
] if x ≤ xm,

(15)

wherein l and xm are defined as

l = 0.146

(
ν

10−5R2
P�P

)−1/3 (
MP

10−3M�

)2/3

RP, (16)

and

xm = 0.207

(
Hg,P

0.1RP

MP

10−3M�

)2/5 (
ν

10−5R2
P�P

)−1/5

RP, (17)

with M� being the stellar mass, and Hg, P the local gaseous disc scale
height.

2.4 Planetary orbital evolution

As we mentioned before, as a planet grows, the exchange of angular
momentum with the gaseous disc produces a torque that results in
the planet’s migration along the disc. If the planet is not able to
open a gap in the disc, then we consider that it migrates under type
I migration. Its stellocentric distance varies as follows:

dRP

dt

∣∣∣∣
migI

= −2RP
�

LP
, (18)

where � is the total torque on the planet, LP the planet angular
momentum, and RP the planet semi-major axis (assuming that it
always remains in a nearly circular orbit).

When the planet becomes massive enough to open a gap in the
gaseous disc, it enters in the type II migration regime. We follow
the criterion derived by Crida, Morbidelli & Masset (2006) for the
transition between type I and type II migration. The treatment of
the latter regime in our model is described in detail in Ronco et al.
(2017).

2.4.1 Previous type I migration rates

In Guilera et al. (2017), we implemented the type I migration rates
derived by Paardekooper et al. (2010, 2011) to study the formation
of giant planets in wide orbits. The total torque is given by:

� = �L + �C. (19)

where �L and �C are the Lindblad and corotation torques, respec-
tively. The former is equal to:

�L = (−2.5 − 1.7β ′ + 0.1α′)
�0

γeff
(20)

where α′ = −dln �g, P/dln R and β ′ = −dln TP/dln R, with TP the
local disc temperature at the mid-plane. The normalized torque �0

is given by:

�0 =
(q

h

)2
�g,P R4

P �2
P, (21)

where q = MP/M� and h = Hg, P/RP. Finally, γ eff reads:

γeff =
2γ Q

γ Q + 1
2

√
2
√

(γ 2Q2 + 1)2 − 16Q2(γ − 1) + 2γ 2Q2 − 2
, (22)

where γ = 7/5 is the specific heat ratio for the diatomic gas, and Q =
2χP�P/3hc2

s,P. cs, P, and χP are the local sound speed and the local
thermal diffusion coefficient at the disc mid-plane, respectively. The
latter is computed as follows:3

χP = 16(γ − 1)σT 4
P

3κPρg,PPP
, (23)

where κP, ρg, P, and PP are the local opacity, local volumetric
gas density, and local pressure of the disc also at the mid-plane
(respectively).

The corotation torque has two main contributions: a barotropic
component and an entropy one. Therefore,

�C = �C,bar + �C,ent. (24)

The detailed expressions of these two terms are described in
Appendix A. It is important to note that the type I migration rates
from Paardekooper et al. (2011) are the most used rates in planet
formation models that consider the evolution of non-isothermal
discs.

2.4.2 Updated type I migration rates

In this work, we incorporate for the first time the new type I
migration rates recently proposed by Jiménez & Masset (2017)
and Masset (2017). We consider that the total torque on the planet
is given by:

� = �Type I + �thermal, (25)

where �Type I is the sum of the Lindblad and corotation torques
(possibly saturated) on the planet, while �thermal is the additional
torque on the planet that arises from thermal effects (the perturbation
of the flow in the planet’s vicinity due to a finite thermal diffusivity
and that arising from the heat released in its surroundings by
the accreting planet). Jiménez & Masset (2017) recently studied
the first term of the right-hand side of equation (25) through
3D hydrodynamical simulations, improving the previous study of
Masset & Casoli (2010). They provide the following expression:
�Type I = �L + �C, where the Lindblad torque is now given by:

�L = (−2.34 − 1.5β ′ + 0.1α′)�0f (χP/χC), (26)

where α′, β ′, �0, and χP are the same quantities aforeintroduced.
We see that while the dependence of the Lindblad torque on the
radial surface density gradient is the same as in Paardekooper et al.
(2011), the dependence on the temperature radial gradient is slightly
smaller. The function f(χP/χC) plays the role of the inverse of an
effective adiabatic index γ eff, as in Paardekooper et al. (2011) and
it reads as follows:

f (x) =
√

x/2 + 1/γ√
x/2 + 1

, (27)

3As it was noted by Bitsch & Kley (2011), there is a typo in the equation (34)
in Paardekooper et al. (2011), the factor in the numerator has to be 16 instead
of 4.
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wherein x = χP/χC, and where χC = R2
Ph2�P is the critical

diffusivity. The corotation torque is now given as the sum of four
contributions: three of them associated with disc radial gradients
(vortensity, entropy, and temperature) and a fourth contribution
which arises from a viscous production of vortensity. The sum
of the three contributions arising from radial gradients may seem
surprising at first glance, as the disc radial profile is determined by
two quantities (e.g. the density and temperature) and two indexes
(e.g. α′ and β ′). While the first three components of the corotation
torque could be compacted into two components, each has different
saturation properties, and the result would obfuscate the physical
origin of each of the components. This has been discussed by
Jiménez & Masset (2017) in Section 4.3. Thus,

�C = �C,vor + �C,ent + �C,temp + �C,vv. (28)

These components are also described in detail in Appendix A. We
remark that these new type I migration prescriptions are derived for
low-mass planets (q < 0.2h3) and intermediate-mass planets (0.2h3

� q � 2h3). For more massive planets able to deplete significantly
the coorbital region, this migration recipe could not be accurate
enough. But such massive planets should be near the transition to
the type II regime.

The second term of the right-hand side of equation (25) was
recently studied by Masset (2017) from the analytical perspective.
This work considers luminous and non-luminous planets and derives
a semi-analytical prescription for �thermal, valid for both regimes. If
the planet does not release energy into the disc, two cold and dense
lobes on either side of the orbit appear due to the thermal diffusion
of the disc. This effect exerts a torque on the planet, comparable
in magnitude to the Lindblad torque. Masset (2017) defines this
as a cold torque and argues that it corresponds to the cold fingers
reported by Lega et al. (2014). Alternatively, if the planet releases
energy into the disc, hot and low-density lobes are generated in
the surroundings. In this case, a heating torque – of opposite sign
with respect to the cold torque – is exerted on the planet (Benı́tez-
Llambay et al. 2015). Here, we implement the thermal torque in the
same way as proposed by Masset (2017), i.e. as the sum of the cold
and the heating torque. The former is given by:

�cold = −1.61
γ − 1

γ

xp

λc

�0

h
, (29)

where xp = ηh2RP, with η = α′/3 + β ′/6 + 1/2, and λc =√
χP/q�Pγ . Alternatively:

�heating = 1.61
γ − 1

γ

xp

λc

LP

LC

�0

h
, (30)

where the critical luminosity LC is given by:

LC = 4πGMPχPρg,P

γ
, (31)

and the luminosity released by the planet, LP, due to the accretion
of planetesimals reads:

LP = GMP

RC

dMC

dt
, (32)

with RC being the radius of the planet’s core. We remark that the total
luminosity of the planet is given by the accretion of solids (which
is a reasonable approximation until the planet accrete a significant
envelope) and that the radius of the planet’s core increases as planet
grows by the accretion of solid material considering a constant
density for the core of 3.2 g/cm3. Thus, the thermal torque can be

written as follows:4

�thermal = 1.61
γ − 1

γ

xp

λc

(
LP

LC
− 1

)
�0

h

= 1.61
γ − 1

γ
η

(
Hg,P

λc

) (
LP

LC
− 1

)
�0. (33)

Finally, we note that the thermal torque is significant while the
heat released by the planet generates an excess of internal energy
outside of the Bondi sphere. Masset (2017) argues that this condition
is satisfied when the time-scale for heat diffusion across the Bondi
radius is shorter than the acoustic time. This condition translates
into MP < Mthermal

crit , where the critical thermal mass is given by

Mthermal
crit = χPcs,P/G. (34)

If the planet mass is greater than this critical mass, it is not
guaranteed that the internal energy injected in the gas near the
planet emerges as an excess of internal energy outside of the Bondi
sphere. In such case, a cut-off of the thermal torque is expected.
From a numerical point of view, when MP > Mthermal

crit , we consider
that �thermal = 0.

3 RESULTS

The aim of this work is to analyse how the updated type I migration
rates described in Section 2.4.2, and especially the thermal torque,
impacts the process of planet formation. To do so, we first construct
migration maps and then model the formation of a planet at different
initial locations and for different protoplanetary disc models.

3.1 Migration maps for the updated type I migration rates

3.1.1 Comparison between Paardekooper et al. (2011) and
Jiménez & Masset (2017) type I migration rates

Here, we compare the type I migration rates derived by
Paardekooper et al. (2011) and Jiménez & Masset (2017) construct-
ing migration maps for both cases. For the calculation of the torques
of the disc on the planet, we require the following quantities: the
gas surface density, the mean viscosity, the scale height of the disc,
the temperature, the volumetric gas density, the sound speed, the
pressure, and the opacity at the mid-plane of the disc. In Fig. 1,
we plot the radial profiles of the aforementioned quantities from
our fiducial simulation,5 at four different stages of the disc’s early
evolution (50 Kyr, 250 Kyr, 500 Kyr, and 1 Myr).

In Fig. 2, we show the migration maps calculated using the
type I migration rates by both Paardekooper et al. (2011) (left)
and Jiménez & Masset (2017) (right-hand panels). Each row
corresponds to a different time, from 50 Kyr (top) to 1 Myr (bottom).
These maps were constructed using 1000 × 1000 radial and mass
bins, both logarithmic equally spaced. The disc extension and the
mass range comprise between 0.1 au and 1000 au and between
0.1 M⊕ and 1000 M⊕, respectively. The green and blue regions
of the maps indicate inward and outward migration of the planet,
respectively. The white region in the migration maps indicates that
the migration rate is very low, reaching the bottom of the colour

4The normalizd torque (�0) defined in Masset (2017) is not equal that the
one defined in this work, so our equation (33) does not have a factor h
multiplying �0 as in equation (146) from Masset (2017).
5Recall from Section 2.1 that for our fiducial model considers Rc = 39 au,
γ = 1, Md = 0.05 M� and α = 10−3.
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5696 O. M. Guilera et al.

Figure 1. Disc radial profiles at four different evolutionary times for our fiducial case. We show the main physical variables of the disc that are involved in the
type I migration rate calculations. �g, ν̄, and Hg represent the disc gas surface density, the mean viscosity, and the disc scale height, respectively. Tmid, ρgmid ,
csmid , Pmid, and κmid define the temperature, the volumetric gas density, the sound speed, the pressure, and the opacity at the disc mid-plane, respectively. The
decreases of the opacities in the inner part of the disc are due to the transition between the metal grain regime and the evaporation of metal grain regime in the
opacity regimes given by Bell & Lin (1994).
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Thermal torque effects on migration 5697

Figure 2. Migration maps at the same four different times of Fig. 1. The green palette represents inward migration while the blue palette shows outward
migration. The migration maps on the left and right columns are constructed with the type I migration rate prescriptions from Paardekooper et al. (2011) and
from Jiménez & Masset (2017), respectively. The black curve in all plots represents the planet mass needed to open a gap in the disc at a given distance,
according to Crida et al. (2006), and so the switch to the type II migration regime (shadowed region). In all plots, the dotted curve corresponds to the condition
q = 2h3 which defines the limit of an intermediate-mass planet.
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